基于LASSO的重度抑郁症中核糖体相关的生物标志物的探索

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
戚家铭
文章摘要
为获取重度抑郁症患者的血液样本的基因生物标志物,从GEO数据库中选择GSE52790和GSE76826数据集,筛选共差异表达基因。通过GO和KEGG分析获取富集通路,从GeneCards数据库中获取与核糖体相关基因,进一步得到核糖体相关的共差异表达基因。构建LASSO模型,获得12个基因生物标志物,分别是RPL26、EIF3L、HABP4、MAPK14、SRPK1、BLMH、TMEM109、AIM2、KISS1、IARS2、RHBDD2、ARMC1,用ROC曲线来评估诊断效果。使用药物基因相互作用数据库DGIdb预测与基因生物标志物相关的潜在药物。
文章关键词
重度抑郁症;核糖体相关;LASSO回归;生物标志物
参考文献
[1] Mariani,N;Cattane,N;Pariante,C.et al.Gene expression studies in Depression development and treatment: an overview of the underlying molecular mechanisms and biological processes to identify biomarkers. Transl Psychiatry 11, 354 (2021). https://doi.org/10.1038/s41398-021-01469-6. [2] Beurel,E;Toups,M;Nemeroff,C.B.The Bidirectional Relationship of Depression and Inflammation:Double Trouble.Neuron 2020, 107, 234–256. [3] Raedler TJ.Inflammatory mechanisms in major depressive disorder.Current Opinion in Psychiatry.2011 Nov;24(6):519-525.DOI:10.1097/yco.0b013e32834b9db6.PMID:21897249. [4] Hoseinzadeh, F.; Abadi, P.H.; Agheltar, M.; Aghayinejad, A., Torabian, F., Rezayat, A.A., Akbarzadeh, F. and Rahimi, H.R. (2016) The Role of Immune System in Depression Disorder. Health, 8, 1726-1743. http://dx.doi.org/10.4236/health.2016.815167. [5] Gabbay V, Klein RG, Alonso CM, Babb JS, Nishawala M, De Jesus G, Hirsch GS, Hottinger-Blanc PM, Gonzalez CJ. Immune system dysregulation in adolescent major depressive disorder. J Affect Disord. 2009 May;115(1-2):177-82. doi: 10.1016/j.jad.2008.07.022. Epub 2008 Sep 13. PMID: 18790541; PMCID: PMC2770721. [6] Edward H Tobe (2013) Mitochondrial dysfunction, oxidative stress, and major depressive disorder, Neuropsychiatric Disease and Treatment, 9:, 567-573, DOI: 10.2147/NDT.S44282. [7] Jones, B.D.M.; Farooqui, S.; Kloiber, S.; Husain, M.O.; Mulsant, B.H.; Husain, M.I. Targeting Metabolic Dysfunction for the Treatment of Mood Disorders: Review of the Evidence. Life 2021, 11, 819. https://doi.org/10.3390/life11080819. [8] Młynarska, E.; Gadzinowska, J.; Tokarek, J.; Forycka, J.; Szuman, A.; Franczyk, B.; Rysz, J. The Role of the Microbiome-Brain-Gut Axis in the Pathogenesis of Depressive Disorder. Nutrients 2022, 14, 1921. https://doi.org/10.3390/nu14091921. [9] Anna Fernández, Alejandra Pinto-Meza, Juan Angel Bellón, Pere Roura-Poch, Josep M. Haro, Jaume Autonell, Diego José Palao, María Teresa Peñarrubia, Rita Fernández, Elena Blanco, Juan Vicente Luciano, Antoni Serrano-Blanco(2010)Is major depression adequately diagnosed and treated by general practitioners? Results from an epidemiological study,General Hospital Psychiatry,32(2):201-209,https://doi.org/10.1016/j.genhosppsych.2009.11.015. [10] Tom Bschor & Laura L. Kilarski (2016) Are antidepressants effective? A debate on their efficacy for the treatment of major depression in adults, Expert Review of Neurotherapeutics, 16:4, 367-374, DOI: 10.1586/14737175.2016.1155985. [11] Wang, H., Han, X. & Gao, S. Identification of potential biomarkers for pathogenesis of Alzheimer’s disease. Hereditas 158, 23 (2021). https://doi.org/10.1186/s41065-021-00187-9. [12] Cui L, Liu M, Lai S, Hou H, Diao T, Zhang D, Wang M, Zhang Y, Wang J. Androgen upregulates the palmitoylation of eIF3L in human prostate LNCaP cells. Onco Targets Ther. 2019 Jun 5;12:4451-4459. doi: 10.2147/OTT.S193480. [13] Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ. 2019;26:1181–1194. [14] Ying Li, Peidong Miao, Fang Li et al. The Role of Ferroptosis in Major Depressive Disorder, 05 October 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3377176/v1]. [15] Shi, M.; Sun, D.; Deng, L.; Liu, J.; Zhang, M.-J. SRPK1 Promotes Glioma Proliferation, Migration, and Invasion through Activation of Wnt/β-Catenin and JAK-2/STAT-3 Signaling Pathways. Biomedicines 2024, 12, 378. https://doi.org/10.3390/biomedicines12020378. [16] Yan Gong, Surong Qian, Dongdong Chen, Ming Ye, Jian Wu, Ya-li Wang. Serum BLMH and CKM as Potential Biomarkers for Predicting Therapeutic Effects of Deep Brain Stimulation in Parkinson's Disease: A Proteomics Study. J. Integr. Neurosci. 2023, 22(6), 163. https://doi.org/10.31083/j.jin2206163. [17] Takenami, T., Maeda, S., Karasawa, H. et al. Novel biomarkers distinguishing pancreatic head Cancer from distal cholangiocarcinoma based on proteomic analysis. BMC Cancer 19, 318 (2019). https://doi.org/10.1186/s12885-019-5548-x. [18] Chen K, Shang S, Yu S, et al. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis. Frontiers in Immunology. 2022 ;13:998470. DOI: 10.3389/fimmu.2022.998470. PMID: 36311726; PMCID: PMC9606687. [19] Taniguchi-Ponciano, Keiko et al. ‘The KISS1 Gene Overexpression as a Potential Molecular Marker for Cervical Cancer Cells’. 1 Jan. 2018 : 709 – 719. [20] Chiricosta L, D’Angiolini S, Gugliandolo A, Mazzon E. Artificial Intelligence Predictor for Alzheimer’s Disease Trained on Blood Transcriptome: The Role of Oxidative Stress. International Journal of Molecular Sciences. 2022; 23(9):5237. https://doi.org/10.3390/ijms23095237 [21] Ali A, Shehwana H, Hanif A, et al. Transcription Factors STAT5A and SPI1 Reveals RHBDD2 as a Potential Biomarker in Sepsis and Septic Shock. bioRxiv; 2020. DOI: 10.1101/2020.09.15.285551. [22] Gan Y, Zhong F, Wang H, Li L. The Valuable Role of ARMC1 in Invasive Breast Cancer as a Novel Biomarker. Biomed Research International. 2022 ;2022:1740295. DOI: 10.1155/2022/1740295. PMID: 35378785; PMCID: PMC8976651.
Full Text:
DOI