作者
林 丽,张林飞,林倩文,张文娟,范家珊
文章摘要
二维(2D)过渡金属碳化物、碳氮化物和氮化物,简称MXenes,化学通式为Mn+1XnTx,因其表面具有丰富的官能团,良好的生物相溶性以及可降低药物毒副作用等优点,是新型功能材料在生物医药输送行为学上关注的焦点之一。这种独特的生物特性使MXenes成为一种有前途的替代性生物材料应用于多种生物医学领域,并揭示了许多新的基础科学发现。在此,本文系统地总结了碳化物MXenes相关生物材料的最新进展,特别关注合成方法、设计和表面工程策略、独特性质、生物效应,特别是性质-活性-生物界面上的效应关系。此外,经过精心设计的碳化物MXenes生物材料在生物传感器、抗菌药物、生物成像和治疗诊断学等领域都进行了详细说明。最后,我们在此基础上深入探讨了基于碳化物MXenes的生物材料未来发展面临的挑战和机遇,旨在促进其早日实现生物医学的临床应用。
文章关键词
二维结构;MXenes;复合材料;生物医学
参考文献
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306, 666-669.
[2] D. Voiry, J. Yang, M. Chhowalla, Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction[J]. Adv. Mater., 2016, 28, 6197-6206.
[3] J. Yin, J. Li, Y. Hang, J. Yu, G. Tai, X. Li, Z. Zhang, W. Guo. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications[J]. Small, 2016, 12, 2942-2968.
[4] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8, 76-80.
[5] E. Gaufres, Scale-up for ultrathin black phosphorus[J]. Nat. Mater., 2021, 20, 1174-1175 .
[6] M. W. Laipan, J. F. Yu, R. L. Zhu, J. X. Zhu, A. T. Smith, H. P. He, D. O' Hare, L. Y. Sun. Functionalized layered double hydroxides for innovative applications[J]. Mater. Horiz., 2020, 7, 715-745.
[7] Y. P. Pang, C. Su, G. H. Jia, L. Q. Xu, Z. P. Shao, Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction[J]. Chem. Soc. Rev., 2021, 50, 12744-12787.
[8] M. Naguib, M. Kurtoglu, V. Presser, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv. Mater., 2011, 23,4248-4253.
[9] J. Z. Jiang, F. Y. Li, J. Zou, et al. Three-dimensional MXenes heterostructures and their applications[J]. Sci. China Mater., 2022, 65, 2895-2910.
[10] M. Naguib, M. W. Barsoum, Y. Gogotsi. Ten Years of Progress in the Synthesis and Development of MXenes[J]. Adv. Mater., 2021, 33, 2103393.
[11] J. Emmerlich, D. Music, P. Eklund, et al. Thermal stability of Ti3SiC2 thin films[J]. Acta Mater., 2007, 55, 291.
[12] Y. T. Guo, S. S. Yi. Recent Advances in the Preparation and Application of Two-Dimensional Nanomaterials[J]. Materials, 2023, 16, 5798.
[13] H. He, Y. Chen, C. Yang, et al. Constructing 3D interweaved MXene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution[J]. J. Energy Chem., 2022, 67, 481-491
[14] K. R. G. Lim, M. Shekhirev, B. C. Wyatt, et al. Fundamentals of MXene synthesis[J]. Nat. Synth., 2022, 1, 601-614.
[15] N. M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers[J]. Nanoscale, 2018, 10, 13520-13530.
[16] M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516, 78-81.
[17] J. Halim, M. R. Lukatskaya, K. M. Cook, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chem. Mater., 2014, 26, 2374-2381.
[18] H. Lin, S. Gao, C. Dai, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. J. Am. Chem. Soc., 2017, 139, 16235-16247.
[19] S. Cao, B. Shen, T. Tong, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J]. Adv. Funct. Mater., 2018, 28, 1800136.
[20] S. Zada, W. Dai, Z. Kai, et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance[J]. Angew. Chem. Int. Ed., 2020, 59, 6601-6606.
[21] M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides[J]. Adv. Funct. Mater., 2013, 23, 2185-2192.
[22] Tang Q, Zhou Z., Shen P. W. Are MXenes promising anode materials for li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer[J]. J. Am. Chem. Soc., 2012, 134, 16909.
[23] Sun B, Lu Q, Chen K, et al. Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage[J]. Adv. Mater., 2022, 2108682.
[24] F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications[J]. Nanotoday, 2020, 30, 100803.
[25] J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J., 2020, 400, 126009.
[26] M. Sametband, I. Kalt, A. Gedanken, R. Sarid, Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl. Mater. Interfaces, 2014, 6, 1228-1235.
[27] J. H. Yin, S. S. Pan, X. Guo, et al. Nb₂C MXene-Functionalized Scaffolds Enables Osteosarcoma Phototherapy and Angiogenesis/Osteogenesis of Bone Defects[J]. Nano-Micro Lett., 2021, 13, 30.
[28] X. Mi, Z. Su, Y. Fu, et al. 3D printing of Ti3C2-MXene-incorporated composite scafolds for acceler ated bone regeneration[J]. Biomed. Mater., 2022, 17, 035002.
[29] R. Huang, X. Chen, Y. Dong, et al. MXene composite nanofbers for cell culture and tissue engineering[J]. ACS Appl. Bio Mater., 2020, 3, 2125–2131.
[30] A. Rafeerad, W. Yan, G. L. Sequiera, et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine[J]. Adv. Healthc. Mater., 2019, 8, 1900569.
[31] H. Gu, Y. Xing, P. Xiong, et al. Three-dimensional porous Ti3C2Tx MXene-graphene hybrid flms for glucose biosensing[J]. ACS Appl. Nano Mater., 2019, 2, 6537-6545.
[32] A. Koyappayil, S. G. Chavan, M. Mohammadniaei, et al. β-Hydroxybutyrate dehydrogenase decorated MXene nanosheets for the amperometric determination of β-hydroxybutyrate[J]. Microchim. Acta., 2020, 187, 277.
[33] G. Y. Liu, J. H. Zou, Q. Y. Tang, et al. Surface Modifed Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy[J]. ACS Appl. Mater. Interfaces., 2017, 9, 40077-40086.
[34] Q. Xue, H. J. Zhang, M. S. Zhu, et al. Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging[J]. Adv. Mater., 2017, 29, 1604847.
[35] X. X. Han, J. Huang, H. Lin, et al. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer[J]. Adv. Healthc. Mater., 2018, 7, e1701394.
[36] F. Seidi, A. A. Shamsabadi, M. D. Firouzjaei, et al. MXenes Antibacterial Properties and Applications: A Review and Perspective[J]. Small, 2023, 19, 2206716.
[37] X. Y. Qu, Y. Guo, C. X. Xie, et al. Photoactivated MXene Nanosheets for Integrated Bone-Soft Tissue Therapy: Effect and Potential Mechanism[J]. ACS Nano, 2023, 17, 7229-7240.
[38] B. Fadeel, C. Bussy, S. Merino, et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment[J]. ACS Nano, 2018, 12, 10582-10620.
[39] A. M. Jastrzębska, A. Szuplewska, A. Rozmysłowska-Wojciechowska, et al. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications[J]. 2D Mater, 2020, 7, 025018.
[40] B. Scheibe, J. K. Wychowaniec, M. Scheibe, et al. Cytotoxicity assessment of Ti-Al-C based MAX phases and Ti3C2Tx MXenes on human fibroblasts and cervical cancer cells[J]. ACS Biomater. Sci. Eng., 2019, 5, 6557–6569.
Full Text:
DOI