影像组学及机器学习在肝泡型包虫病中的应用

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
刘珍妮,雷志毅
文章摘要
肝泡型包虫病(Hepatic Alveolar Echinococcosis,HAE),也称为肝包虫病或肝囊尾蚴病,是一种由泡状棘球绦虫的幼虫(囊尾蚴)引起的寄生虫病,具有“虫癌”之称,病灶具有浸润性生长特征,影像组学及机器学习作为一种新方法,在肝泡型包虫病的诊断和侵犯研究中的价值得到了多数研究者的认同,本文通过影像组学及机器学习对肝泡型包虫病的侵袭范围进行研究,可能为改善预后提供一定的参考价值。
文章关键词
肝泡型包虫病;影像组学;机器学习
参考文献
[1] 陈见中,喻定刚,兰晓蓉,等.复杂泡型肝包虫病MDT讨论[J].肝胆胰外科杂志,2020,32(3):152-156. [2] Bresson-Hadni S,Spahr L,Chappuis F.Hepatic Alveolar Echinococcosis.Semin Liver Dis.2021;41(3):393-408. [3] 唐健,徐治国,赵明星,等.肝包虫病诊断及治疗进展[J].世界最新医学信息文摘,2019,19(43):73-76. [4] Gul S,Khan MS,Bibi A,Khandakar A,Ayari MA,Chowdhury MEH.Deep learning techniques for liver and liver tumor segmentation:A review.Comput Biol Med.2022;147:105620. [5] Deng X,Wang JJ,Wang ZX,et al.Effectiveness and safety of ultrasound-guided percutaneous microwave ablation for hepatic alveolar echinococcosis.BMC Med Imaging.2022;22(1):27.Published 2022 Feb 12. [6] Brunetti E,Kern P,Vuitton DA;Writing Panel for the WHO-IWGE.Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans.Acta Trop.2010;114(1):1-16. [7] Reinehr M,Micheloud C,Grimm F,et al.Pathology of Echinococcosis:A Morphologic and Immunohistochemical Study on 138 Specimens With Focus on the Differential Diagnosis Between Cystic and Alveolar Echinococcosis.Am J Surg Pathol.2020;44(1):43-54. [8] Fabbri J,Pensel PE,Albani CM,et al.Albendazole solid dispersions against alveolar echinococcosis:a pharmacotechnical strategy to improve the efficacy of the drug.Parasitology.2020;147(9):1026-1031. [9] Liu W,DelabrousseÉ,Blagosklonov O,et al.Innovation in hepatic alveolar echinococcosis imaging:best use of old tools,and necessary evaluation of new ones.Parasite.2014;21:74. [10] Kumar V,Gu Y,Basu S,et al.Radiomics:the process and the challenges.Magn Reson Imaging.2012;30(9):1234-1248. [11] Lambin P,Rios-Velazquez E,Leijenaar R,et al.Radiomics:extracting more information from medical images using advanced feature analysis.Eur J Cancer.2012;48(4):441-446. [12] Gillies RJ,Kinahan PE,Hricak H.Radiomics:Images Are More than Pictures,They Are Data.Radiology.2016;278(2):563-577. [13] Zhang G,Wu Z,Xu L,Zhang X,Zhang D,Mao L,et al.Deep learning on enhanced CT images can predict the muscular invasiveness of bladder Cancer.Front Oncol.2021;11:654685. [14] Choi RY,Coyner AS,Kalpathy-Cramer J,Chiang MF,Campbell JP.Introduction to Machine Learning,Neural Networks,and Deep Learning.Transl Vis Sci Technol.2020;9(2):14.Published 2020 Feb 27. [15] Abbasian Ardakani A,Bureau NJ,Ciaccio EJ,Acharya UR.Interpretation of radiomics features-A pictorial review.Comput Methods Programs Biomed.2022;215:106609. [16] Sato M,Morimoto K,Kajihara S,Tateishi R,Shiina S,Koike K,Yatomi Y(2019)Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma.Sci Rep 9(1):7704. [17] Yang Y,Cairang Y,Jiang T,et al.Ultrasound identification of hepatic echinococcosis using a deep convolutional neural network model in China:a retrospective,large-scale,multicentre,diagnostic accuracy study.Lancet Digit Health.2023;5(8):e503-e514. [18] Wang Z,Bian H,Li J,et al.Detection and subtyping of hepatic echinococcosis from plain CT images with deep learning:a retrospective,multicentre study.Lancet Digit Health.2023;5(11):e754-e762. [19] Zhang C,Xu J,Tang R,et al.Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.J Hematol Oncol.2023;16(1):114.Published 2023 Nov 27. [20] Gandhi D,Garg T,Patel L,Elkassem AA,Bansal V,Smith A.Artificial intelligence in gastrointestinal and hepatic imaging:past,present and future scopes.Clin Imaging.2022;87:43-53.
Full Text:
DOI