急进高原不同海拔健康成年人脑血管反应性研究

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
刘 洁,张淑坤,宋亚斌,吴世政
文章摘要
目的:研究不同海拔健康成年人脑血管收缩[脑血管反应性(cerebrovascular reactivity,CVR)]的差异及急进高海拔后脑血管反应性的变化,探讨引起CVR差异和急进高原后变化的可能机制。方法:经颅多普勒结合CO2吸入检测CVR,近红外光谱技术(NIRS)测量局部脑氧饱和度(regional cerebral oxygen saturation,rScO2),同时采集血标本检测血常规、血液流变学,采用酶联免疫吸附法测定血清中血管活性物质。受试者共59人分三组,低海拔组(北京44.4m)从北京当地乘飞机急进中度海拔(西宁2200 m),出发前及到达后24小时,行各项指标检测。休息48h后与中海拔组(西宁2200 m)受试者一同从西宁乘飞机急进高海拔(玉树结古镇3700 m),到达后24小时及48小时检测各项指标。中海拔组在西宁市出发前采集各项指标数据,高海拔组各项指标与低海拔组、中海拔组在到达玉树48h后一同采集。
文章关键词
急进高原;脑血管反应性;局部脑氧饱和度;血管活性物质
参考文献
[1] West J B.The physiologic basis of high-altitude diseases[J].Annals of Internal Medicine,2004,141(10):789-800. [2] Brugniaux J V,Hodges A N H,Hanly P J,et al.Cerebrovascular responses to altitude[J].Respiratory physiology&neurobiology,2007,158(2):212-223. [3] Villien M,Bouzat P,Rupp T,et al.Changes in cerebral blood flow and vasoreactivity to CO 2 measured by arterial spin labeling after 6days at 4350m[J].Neuroimage,2013,72:272-279. [4] Markus H,Cullinane M.Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion[J].Brain,2001,124(3):457-467. [5] Ghosh A,Elwell C,Smith M.Cerebral near-infrared spectroscopy in adults:a work in progress[J].Anesthesia&Analgesia,2012,115(6):1373-1383. [6] Choi S H,Kim S H,Lee S J,et al.Cerebral oxygenation during laparoscopic surgery:jugular bulb versus regional cerebral oxygen saturation[J].Yonsei medical journal,2013,54(1):225-230. [7] Murayama R,Oe M,Tanabe H,et al.The relationship between the tip position of an indwelling venous catheter and the subcutaneous edema[J].Bioscience trends,2015,9(6). [8] Wu S,Hao G,Zhang S,et al.Cerebral vasoconstriction reactions and plasma levels of ETBR,ET-1,and eNOS in patients with chronic high altitude disease[J].Molecular Medicine Reports,2016,14(3):2497-2502. [9] Aquino Lemos V,Antunes H K M,Santos R V T,et al.High altitude exposure impairs sleep patterns,mood,and cognitive functions[J]. Psychophysiology,2012,49(9):1298-1306. [10] Severinghaus J W,Chiodi H,EGER II E I,et al.Cerebral blood flow in man at high altitude Role of cerebrospinal fluid pH in normalization of flow in chronic hypocapnia[J].Circulation research,1966,19(2):274-282. [11] Lucas S J E,Burgess K R,Thomas K N,et al.Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m[J].The Journal of physiology,2011,589(3):741-753. [12] Vestergaard M B,Lindberg U,Aachmann-Andersen N J,et al.Acute hypoxia increases the cerebral metabolic rate–a magnetic resonance imaging study[J].Journal of Cerebral Blood Flow&Metabolism,2015:0271678X15606460. [13] Bailey D M,Taudorf S,Berg R M G,et al.Transcerebral Exchange Kinetics of Nitrite and Calcitonin Gene-Related Peptide in Acute Mountain Sickness Evidence Against Trigeminovascular Activation?[J].Stroke,2009,40(6):2205-2208. [14] Kobayashi H,Ueno S,Tsutsui M,et al.C-type natriuretic peptide increases cyclic GMP in rat cerebral microvessels in primary culture[J].Brain research,1994,648(2):324-326. [15] Henze D,Menzel M,Soukup J,et al.Endothelin-1 and cerebral blood flow in a porcine model[J].Journal of clinical neuroscience, 2007,14(7):650-657. [16] Edvinsson L,Krause D N.Cerebral blood flow and metabolism[J].EUROPEAN JOURNAL OF NEUROLOGY,2002,9(5):550-550. [17] Askew E W.Work at high altitude and oxidative stress:antioxidant nutrients[J].Toxicology,2002,180(2):107-119. [18] Xing J,Wuren T,Simonson T S,et al.Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians[J]. PLoS Genet,2013,9(7):e1003634.[19]Peng Y,Yang Z,Zhang H,et al.Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas[J].Molecular biology and evolution,2011,28(2):1075-1081. [20] Foster G E,Davies‐Thompson J,Dominelli P B,et al.Changes in cerebral vascular reactivity and structure following prolonged exposure to high altitude in humans[J].Physiological reports,2015,3(12):e12647. [21] Gulbenkian S,Uddman R,Edvinsson L.Neuronal messengers in the human cerebral circulation[J].Peptides,2001,22(6):995-1007. [22] Beall C M,Laskowski D,Erzurum S C.Nitric oxide in adaptation to altitude[J].Free Radical Biology and Medicine,2012,52(7):1123-1134. [23] MacInnis M J,Carter E A,Koehle M S,et al.Exhaled nitric oxide is associated with acute mountain sickness susceptibility during exposure to normobaric hypoxia[J].Respiratory physiology&neurobiology,2012,180(1):40-44. [24] Patitucci M,Lugrin D.Angiogenic/lymphangiogenic factors and adaptation to extreme altitudes during an expedition to Mount Everest[J].Acta physiologica,2009,196(2):259-265. [25] Khalil A,Muttukrishna S,Harrington K,et al.Effect of antihypertensive therapy with alpha methyldopa on levels of angiogenic factors in pregnancies with hypertensive disorders[J].PLoS One,2008,3(7):e2766. [26] Kodama Y,Kitta Y,Nakamura T,et al.Atorvastatin increases plasma soluble Fms-like tyrosine kinase-1 and decreases vascular endothelial growth factor and placental growth factor in association with improvement of ventricular function in acute myocardial infarction[J].Journal of the American College of Cardiology,2006,48(1):43-50. [27] Murphy S R,LaMarca B B D,Parrish M,et al.Control of soluble fms-like tyrosine-1(sFlt-1)production response to placental ischemia/ hypoxia:role of tumor necrosis factor-α[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology, 2013, 304(2):R130-R135. [28] Neulen J,Wenzel D,Hornig C,et al.Poor responder–high responder:the importance of soluble vascular endothelial growth factor receptor 1 in ovarian stimulation protocols[J].Human Reproduction,2001,16(4):621-626. [29] Schommer K,Wiesegart N,Dehnert C,et al.No correlation between plasma levels of vascular endothelial growth factor or its soluble receptor and acute mountain sickness[J].High altitude medicine&biology,2011,12(4):323-327. [30] Mannello F,Tonti G A M.Erythropoietin and its receptor in breast cancer:putting together the pieces of the puzzle[J].The oncologist, 2008,13(7):761-768. [31] Jaquet K,Krause K,Tawakol-Khodai M,et al.Erythropoietin and VEGF exhibit equal angiogenic potential[J].Microvascular research, 2002,64(2):326-333. [32] Aimee Y Y,Frid M G,Shimoda L A,et al.Temporal,spatial,and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,1998,275(4):L818-L826. [33] Palmer L A,Semenza G L,Stoler M H,et al.Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1[J].American Journal of Physiology-Lung Cellular and Molecular Physiology,1998,274(2):L212-L219. [34] Dubowitz D J,Dyer E A W,Theilmann R J,et al.Early brain swelling in acute hypoxia[J].Journal of Applied Physiology, 2009, 107(1):244-252. [35] Dobashi S,Horiuchi M,Endo J,et al.Cognitive Function and Cerebral Oxygenation During Prolonged Exercise Under Hypoxia in Healthy Young Males[J].High Altitude Medicine&Biology,2016,17(3):214-221. [36] Choi S H,Kim S H,Lee S J,et al.Cerebral oxygenation during laparoscopic surgery:jugular bulb versus regional cerebral oxygen saturation[J].Yonsei medical journal,2013,54(1):225-230. [37] Feng Y,Rhodes P G,Bhatt A J.Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor A,preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic–ischemic model[J].Brain research,2010,1325:1-9. [38] Anderson J,Sandhir R,Hamilton E S,et al.Impaired Expression of Neuroprotective Molecules in the HIF-1αPathway following Traumatic Brain Injury in Aged Mice[J].Journal of neurotrauma,2009,26(9):1557-1566. [39] Taie S,Ono J,Iwanaga Y,et al.Hypoxia-inducible factor-1αhas a key role in hypoxic preconditioning[J].Journal of Clinical Neurosci- ence, 2009,16(8):1056-1060. [40] Sun Y,Jin K,Xie L,et al.VEGF-induced neuroprotection,neurogenesis,and angiogenesis after focal cerebral ischemia[J].The Journal of clinical investigation,2003,111(12):1843-1851.
Full Text:
DOI