作者
何松霖,常 琼
文章摘要
随着社会结构及生活方式改变,糖尿病在我国增长迅速,而人口的老龄化,导致≥60岁的糖尿病患者人数逐年增加,糖尿病及其相关并发症的发生,更是严重降低了患者的生活质量,增加了经济负担。长期血糖控制不达标,会出现糖尿病引起的多种并发症,糖尿病性肾病是严重的糖尿病慢性并发症,可引发终末期肾病。2型糖尿病肾病发展机制复杂,氧化应激和炎症相关为该过程中的关键因素,高血糖、炎症反应、钙磷代谢紊乱等因素可能参与了2型糖尿病肾病并发骨质疏松症的发生发展过程。早期诊断糖尿病慢性并发症将有助于尽早开始治疗,延缓其进展,提高患者的生活质量。故本文总结了2型糖尿病肾病患者并发骨质疏松症的可能机制及降糖药物的影响,为糖尿病性骨质疏松症的防治提供新思路。
文章关键词
2型糖尿病;2型糖尿病肾病;骨质疏松;降糖药物
参考文献
[1] 中国老年人2型糖尿病防治临床指南编写组;中国老年医学会老年内分泌与代谢分会;中国老年医学会老年内分泌与代谢分会;北京市医学奖励基金会老年医学专业委员会;国家老年病临床医学研究中心(解放军总医院)。中华内科杂志.2022;61(1):12-50.
[2] 冯文帅,冯志海,靳鸽,等.早期糖尿病肾病的防治进展[J].中国中医药现代远程教育,2023,21(02):185-188.
[3] 张萁,李俊,李青菊.早期2型糖尿病肾病患者骨代谢指标与血糖波动的关系[J].中国医学创新,2023,20(11):116-121.
[4] Charlton A, Garzarella J, Jandeleit-Dahm KAM, Jha JC. Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes.Biology. 2021; 10(1):18.
[5] Yang K-J, Choi WJ, Chang Y-K, Park CW, Kim SY, Hong YA. Inhibition of Xanthine Oxidase Protects against Diabetic Kidney Disease through the Amelioration of Oxidative Stress via VEGF/VEGFR Axis and NOX-FoxO3a-eNOS Signaling Pathway.International Journal of Molecular Sciences. 2023; 24(4):3807.
[6] Tian L, Nikolic-Paterson DJ, Tesch GH. Establishing equivalent diabetes in male and female Nos3-deficient mice results in a comparable onset of diabetic kidney injury. Physiol Rep. 2019;7(18):e14197.
[7] Alhayaza R., Haque E., Karbasiafshar C., Sellke F.W., Abid M.R. The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Front. Chem.2020;8:592-688.
[8] Wetzel MD, Gao T, Stanley K, Cooper TK, Morris SM Jr, Awad AS. Enhancing kidney DDAH-1 expression by adenovirus delivery reduces ADMA and ameliorates diabetic nephropathy. Am J Physiol Renal Physiol. 2020;318(2):F509-F517.
[9] Lee HE, Shim S, Choi Y, Bae YS. NADPH oxidase inhibitor development for diabetic nephropathy through water tank model. Kidney Res Clin Pract. 2022;41(Suppl 2):S89-S98.
[10] Lee SR, An EJ, Kim J, Bae YS. Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors. Biomol Ther (Seoul). 2020;28(1):25-33.
[11] Jha JC, Ho F, Dan C, Jandeleit-Dahm K. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes.Clin Sci (Lond). 2018;132(16):1811-1836.
[12] 高尚刘鑫,朱国贞.糖尿病患者急性肾损伤向慢性肾脏病转变的炎性因子机制[J].微循环学杂志,2024,34(03):98-103.
[13] Pérez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernández C, Navarro-González JF. Inflammation in Diabetic Kidney Disease. Nephron. 2019;143(1):12-16.
[14] Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, Cullere X, Eckfeldt JH, Doria A, Mayadas TN, Warram JH, Krolewski AS: Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol 2012;23:507-515.
[15] Radovan Hojs, Robert Ekart, Sebastjan Bevc, Nina Hojs; Markers of Inflammation and Oxidative Stress in the Development and Progression of Renal Disease in Diabetic Patients. Nephron 25 July 2016; 133 (3): 159–162.
[16] Tanase DM, Gosav EM, Neculae E, Costea CF, Ciocoiu M, Hurjui LL, Tarniceriu CC, Maranduca MA, Lacatusu CM, Floria M, Serban IL. Role of Gut Microbiota on Onset and Progression of Microvascular Complications of Type 2 Diabetes (T2DM). Nutrients. 2020 Dec 2;12(12):3719.
[17] Huang JH, Cheng FC, Wu HC. Low Magnesium Exacerbates Osteoporosis in Chronic Kidney Disease Patients with Diabetes. Int J Endocrinol. 2015;2015:380247.
[18] An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosisin osteoclast-mediated diabetic osteoporosis.FASEBJ. 2019;33(11):12515-12527.
[19] Esposito P, Picciotto D, Cappadona F, et al. Multifaceted relationship between diabetes and kidney diseases: Beyond diabetes. World J Diabetes. 2023;14(10):1450-1462.
[20] Cipriani C, Colangelo L, Santori R, et al. The Interplay Between Bone and Glucose Metabolism. Front Endocrinol (Lausanne). 2020;11:122.
[21] An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosisin osteoclast-mediated diabetic osteoporosis.FASEBJ. 2019;33(11):12515-12527.
[22] Li CI, Liu CS, Lin WY, et al. Glycated Hemoglobin Level and Risk of Hip Fracture in Older People with Type 2 Diabetes: A Competing Risk Analysis of Taiwan Diabetes Cohort Study. J Bone Miner Res. 2015;30(7):1338-1346.
[23] Cipriani C, Colangelo L, Santori R, et al. The Interplay Between Bone and Glucose Metabolism. Front Endocrinol (Lausanne). 2020;11:122.
[24] Yang X., Wang G., Wang Y. et al. (2019) Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J. Cell. Mol. Med. 23, 2149–2162
[25] Liu MM, Dong R, Hua Z, et al. Therapeutic potential of Liuwei Dihuang pill against KDM7A and Wnt/β-catenin signaling pathway in diabetic nephropathy-related osteoporosis. Biosci Rep. 2020;40(9):BSR20201778.
[26] Kelly MS, Lewis J, Huntsberry AM, Dea L, Portillo I. Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med. 2019;131(1):31-42.
[27] Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Bone Metabolism and Fracture Risk. Front Pharmacol. 2019;9:1517.
[28] Thrailkill K. M., Clay B. R., Nyman J. S., Rettiganti M. R., Cockrell G. E., Wahl E. C., et al. (2016). SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone 82 101–107.
[29] Tang H. L, Li D. D, Zhang J. J, Hsu Y. H, Wang T. S, Zhai S. D, et al.(2016).Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 18 1199–1206.
[30] O'Hara DV, Parkhill TR, Badve SV, Jun M, Jardine MJ, Perkovic V. The effects of dipeptidyl peptidase-4 inhibitors on kidney outcomes. Diabetes Obes Metab. 2021;23(3):763-773.
[31] Matteo Monami, Ilaria Dicembrini, Alessandro Antenore, Edoardo Mannucci; Dipeptidyl Peptidase-4 Inhibitors and Bone Fractures: A meta-analysis of randomized clinical trials. Diabetes Care 1 November 2011; 34 (11): 2474–2476
[32] Goldney J, Sargeant JA, Davies MJ. Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia. 2023;66(10):1832-1845.
[33] Cheng L, Hu Y, Li YY, et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2019;35(7):e3168.
[34] Catalina Bosch, Sol Carriazo, María José Soler, Alberto Ortiz, Beatriz Fernandez-Fernandez, Tirzepatide and prevention of chronic kidney disease, Clinical Kidney Journal, Volume 16, Issue 5, May 2023, Pages 797–808.
[35] Heerspink HJL, Sattar N, Pavo I, et al. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2022;10(11):774-785.
Full Text:
DOI