功能化介孔硅纳米载体用于肿瘤治疗的研究进展

ISSN:2705-098X(P)

EISSN:2705-0505(O)

语言:中文

作者
张翔珂,董雨萌,陈 铭,张新宇,阎雪莹
文章摘要
随着纳米材料研究的深入,纳米药物输送系统在癌症的治疗与诊断方面的应用越来越广泛。其中,介孔二氧化硅纳米颗粒(MSN)具有比表面积大、孔体积大、孔径可调、生物相容性高等独特优势,有利于在其基础上合成多功能的抗肿瘤药物。合成的功能化MSN的递送系统可以显著提高癌症的治疗效果并减少对正常组织的细胞毒性。为了进一步改善MSN的体内特性和潜在的临床转化,设计具有适当结构和理想的靶向效果的MSN至关重要。在这篇综述中,我们讨论了影响MSN合成以及载药的因素,重点总结了基于功能化MSN的癌症治疗系统的新研究进展。此外,就功能化MSN用于癌症治疗的挑战与未来展开了讨论。
文章关键词
介孔二氧化硅纳米粒;功能化修饰;药物;靶向性修饰;刺激响应性修饰
参考文献
[1] H Sung, J Ferlay, RL Siegel, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries CA Cancer J Clin 71: 209-249. [2] KJ Gotink, HJ Broxterman, M Labots, et al. (2011) Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance Clin Cancer Res 17: 7337-7346. [3] H Lee, SM Dellatore, WM Miller, PB Messersmith (2007) Mussel-inspired surface chemistry for multifunctional coatings Science 318: 426-430. [4] F Amri, NLW Septiani, M Rezki, et al. (2021) Mesoporous TiO2-based architectures as promising sensing materials towards next-generation biosensing applications J Mater Chem B 9: 1189-1207. [5] TL Nguyen, Y Choi, J Kim (2019) Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy Adv Mater 31: e1803953. [6] B Escriche-Navarro, A Escudero, E Lucena-Sanchez, F Sancenon, A Garcia-Fernandez, R Martinez-Manez (2022) Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy Adv Sci (Weinh): e2200756. [7] J Salapa, A Bushman, K Lowe, J Irudayaraj (2020) Nano drug delivery systems in upper gastrointestinal cancer therapy Nano Converg 7: 38. [8] L Laskowski, M Laskowska, N Vila, M Schabikowski, A Walcarius (2019) Mesoporous Silica-Based Materials for Electronics-Oriented Applications Molecules 24. [9] X Yang, P Qiu, J Yang, et al. (2021) Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic Small 17: e1904022. [10] Y Kuang, J Zhai, Q Xiao, S Zhao, C Li (2021) Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review Int J Biol Macromol 193: 457-473. [11] A Barkat, S Beg, SK Panda, SA K, M Rahman, FJ Ahmed (2021) Functionalized mesoporous silica nanoparticles in anticancer therapeutics Semin Cancer Biol 69: 365-375. [12] L Shao, T Hu, X Fan, et al. (2022) Intelligent Nanoplatform with Multi Therapeutic Modalities for Synergistic Cancer Therapy ACS Appl Mater Interfaces 14: 13122-13135. [13] H Zhao, J Wang, X Li, et al. (2021) A biocompatible theranostic agent based on stable bismuth nanoparticles for X-ray computed tomography/magnetic resonance imaging-guided enhanced chemo/photothermal/chemodynamic therapy for tumours J Colloid Interface Sci 604: 80-90. [14] J Wang, B Li, X Pu, et al. (2020) Injectable Multicomponent Biomimetic Gel Composed of Inter-Crosslinked Dendrimeric and Mesoporous Silica Nanoparticles Exhibits Highly Tunable Elasticity and Dual Drug Release Capacity ACS Appl Mater Interfaces 12: 10202-10210. [15] CH Tsai, JL Vivero-Escoto, Slowing, II, IJ Fang, BG Trewyn, VS Lin (2011) Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles Biomaterials 32: 6234-6244. [16] T Li, S Shi, S Goel, et al. (2019) Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer Acta Biomater 89: 1-13. [17] D Zhao, J Feng, Q Huo, et al. (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores Science 279: 548-552. [18] I Ponton, A Marti Del Rio, M Gomez Gomez, D Sanchez-Garcia (2020) Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids Nanomaterials (Basel) 10. [19] MX Wu, X Wang, YW Yang (2018) Polymer Nanoassembly as Delivery Systems and Anti-Bacterial Toolbox: From PGMAs to MSN@PGMAs Chem Rec 18: 45-54. [20] A Rhazouani, H Gamrani, M El Achaby, et al. (2021) Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of In Vitro and In Vivo Studies Biomed Res Int 2021: 5518999. [21] C Chircov, A Spoiala, C Paun, et al. (2020) Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents Molecules 25. [22] V Selvarajan, S Obuobi, PLR Ee (2020) Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections Front Chem 8: 602. [23] X He, F Chen, Z Chang, et al. (2022) Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection Chem Rec 22: e202100287. [24] E Sharifi, A Bigham, S Yousefiasl, et al. (2022) Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation Adv Sci (Weinh) 9: e2102678. Doi:10.1002/advs.202102678 [25] M Koohi Moftakhari Esfahani, SE Alavi, PJ Cabot, N Islam, EL Izake (2022) Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy Pharmaceutics 14. [26] RK Kankala, YH Han, HY Xia, SB Wang, AZ Chen (2022) Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications J Nanobiotechnology 20: 126. [27] R Zhao, T Li, G Zheng, K Jiang, L Fan, J Shao (2017) Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex Biomaterials 143: 1-16. [28] N Traverso, R Ricciarelli, M Nitti, et al. (2013) Role of glutathione in cancer progression and chemoresistance Oxid Med Cell Longev 2013: 972913. [29] SP Hadipour Moghaddam, M Yazdimamaghani, H Ghandehari (2018) Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery J Control Release 282: 62-75. [30] H Kim, S Kim, C Park, H Lee, HJ Park, C Kim (2010) Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers Adv Mater 22: 4280-4283. [31] TM Guardado-Alvarez, L Sudha Devi, MM Russell, BJ Schwartz, JI Zink (2013) Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons J Am Chem Soc 135: 14000-14003. [32] X Mei, S Yang, D Chen, et al. (2012) Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with beta-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release Chem Commun (Camb) 48: 10010-10012. Doi:10.1039/c2cc33995a [33] B Chen, J Cao, K Zhang, et al. (2021) Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles J Biomater Sci Polym Ed 32: 2028-2045. Doi:10.1080/09205063.2021.1954138 [34] X Li, JF Lovell, J Yoon, X Chen (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer Nat Rev Clin Oncol 17: 657-674. [35] S Peng, F Zhang, B Huang, J Wang, L Zhang (2021) Mesoporous Silica Nanoprodrug Encapsulated with Near-Infrared Absorption Dye for Photothermal Therapy Combined with Chemotherapy ACS Appl Bio Mater 4: 8225-8235. [36] X Cai, Y Luo, Y Song, et al. (2018) Integrating in situ formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy Nanoscale 10: 22937-22945. Doi:10.1039/c8nr07679k
Full Text:
DOI