慢性乙型肝炎的直接和间接抗病毒药物新疗法

ISSN:2811-051X(P)

EISSN:2811-0781(O)

语言:中文

作者
刘婧敏
文章摘要
慢性乙型肝炎(Chronic hepatitis B, CHB)是由乙型肝炎病毒(Hepatitis B virus, HBV)感染人体引发的一个全球公共卫生问题,随着治疗慢性乙型肝炎疾病机制和作用靶点的研究,越来越多的抗病毒药物进入临床试验阶段并投入使用。通过临床应用数据分析和查阅国内外近五年发表的相关论文发现,直接抗病毒药和间接抗病毒药的研发成为抗病毒药物研究的主流趋势。其中,直接作用抗病毒药物(DAAs),如小干扰RNA、反义寡核苷酸、核酸聚合物等,通过直接干扰HBV的感染和复制阶段抑制其增殖,进而抑制乙型肝炎的疾病进程。而固有免疫调节剂、免疫检查点抑制剂等间接抗病毒药物则通过调节机体的免疫反应来影响HBV的活性。本文将对上述治疗方法进行讨论,以期为乙型肝的临床治疗和研究方向提供有效参考。
文章关键词
慢性乙型肝炎;乙型肝炎病毒;抗病毒治疗;直接抗病毒药;间接抗病毒药
参考文献
[1]World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. [2]黄爱龙,袁正宏,南月敏,等.乙型肝炎临床治愈策略:直接抗病毒药物[J].中华肝脏病杂志,2020,28(8):640-644. [3]Van Gulck, E, Conceição-Neto, N, Aerts, L, et al. Retreatment with HBV siRNA Results in Additional Reduction in HBV Antigenemia and Immune Stimulation in the AAV-HBV Mouse Model Viruses. 2024; 16 (3): 347. [4]Gao L, Yang J, Feng J, et al. PreS/2-21-Guided siRNA Nanoparticles Target to Inhibit Hepatitis B Virus Infection and Replication. Front Immunol. 2022-01-01; 13 856463. [5]Mu Y, Ren XH, Han D, et al. Codelivery of HBx-siRNA and plasmid encoding IL-12 for inhibition of hepatitis B virus and reactivation of antiviral immunity. Pharmaceutics. 2022;14 (7).[6]Yuen MF, Asselah T, Jacobson IM, et al. Efficacy and safety of the siRNA JNJ-3989 and/or the capsid assembly modulator JNJ-6379 for the treatment of chronic hepatitis B virus infection: results from the phase 2b REEF-1 study[J]. Hepatology,2021,74 (6):1390A-1A. [7]You S, Delahaye J, Ermler M, et al. Bepirovirsen, antisense oligonucleotide (ASO) against hepatitis B virus (HBV), harbors intrinsic immunostimulatory activity via Toll-like receptor 8 (TLR8) preclinically, correlating with clinical efficacy from the Phase 2a study J HEPATOL. 2022-07-01; 77 S873-S874. [8]李德瑶,陆丹娟,鲁凤民.反义寡核苷酸治疗慢性乙型肝炎,相对确定的有限疗效与尚未明确的机制[J].中华肝脏病杂 志,2023,31(2):192-197. [9]Yuen MF, Heo J, Jang JW, et al. Safety, tolerability and antiviral activity of the antisense oligonucleotide bepirovirsen in patients with chronic hepatitis B: a phase 2 randomized controlled trial [J]. Nat Med,2021,27(10):1725-1734. [10]Kim H, Ko C, Lee JY, et al. Current Progress in the Development of Hepatitis B Virus Capsid Assembly Modulators: Chemical Structure, Mode-of-Action and Efficacy. Molecules. 2021;26(24):7420. [11]Wang S, Ren Y, Li Q, et al. Design, synthesis, and biological evaluation of novel sulfamoylbenzamide derivatives as HBV capsid assembly modulators. Bioorg Chem. 2022 Dec;129:106192. [12]Ivanova Bencheva L, Donnici L, Ferrante L, et al. Discovery and antiviral profile of new sulfamoylbenzamide derivatives as HBV capsid assembly modulators. BIOORG MED CHEM LETT. 2022-10-01; 73 128904. [13]Hurwitz SJ, McBrearty N, Arzumanyan A, et al. Studies on the Efficacy, Potential Cardiotoxicity and Monkey Pharmacokinetics of GLP-26 as a Potent Hepatitis B Virus Capsid Assembly Modulator. Viruses. 2021;13(1):114. [14]Yuen MF, Agarwal K, Gane EJ, et al. Safety, pharmacokinetics, and antiviral effects of ABI-H0731, a hepatitis B virus core inhibitor: a randomised, placebo-controlled phase 1 trial. Lancet Gastroenterol Hepatol. 2020 Feb;5(2):152-166. [15]Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut. 2021;70(9):1782-1794. [16]杨佳奇,李红.入胞抑制剂 Myrcludex-B 合成肽对 HBV 感染 HepaRG 细胞体外感染模型的抑制作用研究[J].中华肝脏病杂 志,2020,28(6):499-503. [17]Wedemeyer H, Schoeneweis K, Bogomolov PO, et al. Final results of a multicenter, open - label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in patients with PEG - interferon Alpha 2a in patients with chronic HBV/ HDV co-infection[J]. J Hepatol,2019,70(1):e81. [18]Bazinet M, Anderson M, Pântea V, et al. HBsAg isoform dynamics during NAP-based therapy of HBeAg-negative chronic HBV and HBV/HDV infection. Hepatol Commun. 2022-08-01; 6 (8): 1870-1880. [19]BAZINET M, PÂNTEA V, PLACINTA G, et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon alfa-2a in patients with chronic HBV infection naïve to nucleos(t)ide therapy[J]. Gastroenterology,2020,158(8):2180-2194. [20]Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses. 2021;13(8):1463. [21]Singh P, Kairuz D, Arbuthnot P, et al. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol. 2021;27(23):3182-3207. [22]Martinez MG, Smekalova E, Combe E, et al. Gene Editing Technologies to Target HBV cccDNA. Viruses. 2022;14(12):2654. [23]Martinez MG, Combe E, Inchauspe A, et al. CRISPR-Cas9 Targeting of Hepatitis B Virus Covalently Closed Circular DNA Generates Transcriptionally Active Episomal Variants. mBio. 2022;13(2):e0288821. [24]Yang YC, Chen YH, Kao JH, et al. Permanent inactivation of HBV genomes by CRISPR/Cas9-mediated non-cleavage base editing. Mol Ther Nucleic Acids,2020;20:480–90. [25]Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like receptor response to hepatitis B virus infection and potential of TLR agonists as immunomodulators for treating chronic hepatitis B: anoverview[J]. Int J Mol Sci,2021,22(19):10462.[26]Amin OE, Colbeck EJ, Daffis S, et al. Therapeutic potential of TLR8 agonist GS‐9688 (selgantolimod) in chronic hepatitis B: re‐modelling of antiviral and regulatory mediators. Hepatology,2021;74:55‐71. [27]Gane EJ, Kim HJ, Visvanathan K, et al. Safety, pharmacokinetics, and pharmacodynamics of the oral TLR8 agonist selgantolimod in chronic hepatitis B [in press]. Hepatology,2021;74:1737‐1749. [28]Gane E, Dunbar PR, Brooks A, et al. Efficacy and safety of 24 weeks treatment with oral TLR8 agonist, selgantolimod, in virally‐suppressed adult patients with chronic hepatitis B: a phase 2 study. J Hepatol,2020;73:S52. [29]Wei L, Zhao TT, Zhang J, et al. Efficacy and safety of a nanoparticle therapeutic vaccine in patients with chronic hepatitis B: A randomized clinical trial [J]. Hepatology,2022,75(1):182-195. [30]Meng Z, Chen Y, Lu M. Advances in Targeting the Innate and Adaptive Immune Systems to Cure Chronic Hepatitis B Virus Infection. Front Immunol. 2020;10:3127. [31]Lee HW, Park JY, Hong T, et al. Efficacy of Lenvervimab, a Recombinant Human Immunoglobulin, in Treatment of Chronic Hepatitis B Virus Infection [J]. Clin Gastroenterol Hepatol,2020,18(13):3043-3045. [32]Wu CR, Kim HJ, Sun CP, et al. Mapping the conformational epitope of a therapeutic monoclonal antibody against HBsAg by in vivo selection of HBV escape variants[J]. Hepatology,2022,76 (1):207-219. [33]Bournazos S, Corti D, Virgin HW, et al. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature,2020;588:485-90. [34]Ferrando-Martinez S, Snell Bennett A, Lino E, et al. Functional Exhaustion of HBV-Specific CD8 T Cells Impedes PD-L1 Blockade Efficacy in Chronic HBV Infection. Front Immunol. 2021-01-01; 12 648420. [35]Jia Y, Zhao J, Wang C, et al. HBV DNA polymerase upregulates the transcription of PD-L1 and suppresses T cell activity in hepatocellular carcinoma. J Transl Med. 2024-03-12; 22 (1): 272. [36]Zhen S, Qiang R, Lu J, et al. Enhanced antiviral benefit of combination therapy with anti-HBV and anti-PD1 gRNA/cas9 produces a synergistic antiviral effect in HBV infection. MOL IMMUNOL. 2021-02-01; 130 7-13. [37]Hagiwara S, Nishida N, Ida H, et al. Clinical implication of immune checkpoint inhibitor on the chronic hepatitis B virus infection. HEPATOL RES. 2022-09-01; 52 (9): 754-761. [38]De Keukeleire SJ, Vermassen T, Nezhad ZM, et al. Managing viral hepatitis in cancer patients under immune checkpoint inhibitors: should we take the risk? IMMUNOTHERAPY-UK. 2021-04-01; 13 (5): 409-418. [39]Ferrando-Martinez S, Snell Bennett A, Lino E, et al. Functional exhaustion of HBV-specific CD8 T cells impedes PD-L1 blockade efficacy in chronic HBV. Infection,2021;12:648420.
Full Text:
DOI