间充质干细胞治疗高原性痛风的研究进展

ISSN:2811-051X(P)

EISSN:2811-0781(O)

语言:中文

作者
赵云飞,苏 娟
文章摘要
这篇综述系统探讨了间充质干细胞在治疗高原性痛风中的研究进展。高原环境通过持续低氧影响尿酸代谢,导致高尿酸血症和痛风发病率升高,传统药物治疗在高海拔条件下存在疗效受限、副作用增加及无法实现组织修复等问题。间充质干细胞凭借其抗炎、免疫调节、促进组织修复和调节尿酸代谢等多重功能,展现出治疗潜力。文章重点阐述了缺氧诱导因子在高原痛风发病机制中的作用,及其与间充质干细胞功能的相互作用,提出了通过低氧预处理等策略优化间充质干细胞治疗效果的新思路。尽管面临安全性、标准化和临床转化等挑战,间充质干细胞疗法仍有望成为高原痛风治疗的重要突破。
文章关键词
高原性痛风;间充质干细胞;缺氧诱导因子;尿酸代谢;组织修复;低氧预处理;MSCs疗法
参考文献
[1] Dalbeth N,Gosling AL,Gaffo A,Abhishek A.Gout[published correction appears in Lancet.2021 May 15;397(10287):1808. [2] Punzi L,Scagnellato L,Galozzi P,et al.Gout:one year in review 2025.Clin Exp Rheumatol.2025;43(5):799-808. [3] Song J,Jin C,Shan Z,Teng W,Li J.Prevalence and Risk Factors of Hyperuricemia and Gout:A Cross-sectional Survey from 31 Provinces in Mainland China.J Transl Int Med.2022;10(2):134-145.Published 2022 Jul 7. [4] Li K,Gesang L,He C.Mechanism of apoptosis involved in gastric mucosal lesions in Tibetans with high-altitude polycythemia.Exp Ther Med.2017;14(4):3780-3787. [5] Camici M,Garcia-Gil M,Allegrini S,et al.Inborn Errors of Purine Salvage and Catabolism.Metabolites.2023;13(7):787.Published 2023 Jun 24. [6] Park JH,Jo YI,Lee JH.Renal effects of uric acid:hyperuricemia and hypouricemia.Korean J Intern Med.2020;35(6):1291-1304. [7] Hardwell TR,Braven J,Shaw S,Whittaker M.Phosphoribosyl pyrophosphate synthetase and glutathione reductase in erythrocytes from hyperuricaemic and gout patients.Clin Chim Acta.1982;126(3):217-226. [8] He B,Feng J,Shu Y,et al.Prevalence and Risk Factors of Hyperuricemia Among Young and Middle-Aged Tibetan Men Living at Ultrahigh Altitudes:A Cross-Sectional Study.High Alt Med Biol.2024;25(1):42-48. [9] Mao Y.X.,YU J.Y.,Feng H.Meta-Analysis of the Effects of High Altitude Environment on Renal Function.Chongqing Med.2022; 52:432–435. [10] Wang Q,Liu G,Duan Y,Duo D,Zhu J,Li X.Exploring cytochrome P450 under hypoxia:potential pharmacological significance in drug metabolism and protection against high-altitude diseases.Drug Metab Dispos.2025;53(2):100026. [11] ZHANG Juan-ling,LI Xiang-yang.A review of drug metabolism under hypoxia environment at high altitude[J].Acta Pharm Sin,2015, 50(9):1073-1079. [12] 余漩,郑婷,李健杰,等.高原特需药使用依从性与高原反应发生率的相关性调查分析[J].中国药房,2015,26(21):2894-2896. [13] Sriranganathan MK,Vinik O,Pardo Pardo J,Bombardier C,Edwards CJ.Interventions for tophi in gout.Cochrane Database Syst Rev. 2021;8(8):CD010069.Published 2021 Aug 11. [14] Meng X,Wielockx B,Rauner M,Bozec A.Hypoxia-Inducible Factors Regulate Osteoclasts in Health and Disease.Front Cell Dev Biol. 2021;9:658893.Published 2021 Mar 18. [15] Samsonraj RM,Raghunath M,Nurcombe V,Hui JH,van Wijnen AJ,Cool SM.Concise Review:Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine.Stem Cells Transl Med.2017;6(12):2173-2185. [16] Cummins EP,Taylor CT.Hypoxia-responsive transcription factors.Pflugers Arch.2005;450(6):363-371. [17] Semenza GL.Hypoxia-inducible factors in physiology and medicine.Cell.2012;148(3):399-408. [18] Semenza GL.HIF-1 and mechanisms of hypoxia sensing[J].Curr Opin Cell Biol.2001 Apr;13(2):167-71. [19] Semenza GL.Hypoxia-inducible factor 1:control of oxygen homeostasis in health and disease[J].PediatrRes.2001May;49(5):614-7. [20] Vogler M,Vogel S,et al.Hypoxia modulates fibroblastic architecture,adhesion and migration:a role for HIF-1αin cofilin regulation and cytoplasmic actin distribution[J].PLoS One.2013 Jul 18;8(7):e69128. [21] Thornton RD,Lane P,et al.Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts[J].Biochem J. 2000 Aug 15;350 Pt 1(Pt 1):307-12. [22] Marinescu CI,Preda MB,Burlacu A.A procedure for in vitro evaluation of the immunosuppressive effect of mouse mesenchymal stem cells on activated T cell proliferation.Stem Cell Res Ther.2021;12(1):319.Published 2021 Jun 5. [23] Le Blanc K,Davies LC.Mesenchymal stromal cells and the innate immune response.Immunol Lett.2015;168(2):140-146. [24] Wang G,Cao K,Liu K,et al.Kynurenic acid,an IDO metabolite,controls TSG-6-mediated immunosuppression of human mesenchymal stem cells.Cell Death Differ.2018;25(7):1209-1223. [25] Ylöstalo JH,Bartosh TJ,Coble K,Prockop DJ.Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype.Stem Cells.2012;30(10):2283-2296. [26] Prockop DJ.Concise review:two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation.Stem Cells.2013;31(10):2042-2046. [27] Oh JY,Ko JH,Lee HJ,et al.Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species.Stem Cells.2014;32(6):1553-1563. [28] Shin TH,Kim HS,Kang TW,et al.Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis.Cell Death Dis.2016;7(12):e2524.Published 2016 Dec 22. [29] Herrero-Beaumont G,Pérez-Baos S,Sánchez-Pernaute O,Roman-Blas JA,Lamuedra A,Largo R.Targeting chronic innate inflammatory pathways,the main road to prevention of osteoarthritis progression.Biochem Pharmacol.2019;165:24-32. [30] Medina JP,Bermejo-Álvarez I,Pérez-Baos S,et al.MSC therapy ameliorates experimental gouty arthritis hinting an early COX-2 induction.Front Immunol.2023;14:1193179.Published 2023 Jul 18. [31] Mazini L,Ezzoubi M,Malka G.Overview of current adipose-derived stem cell(ADSCs)processing involved in therapeutic advancements:flow chart and regulation updates before and after COVID-19.Stem Cell Res Ther.2021;12(1):1.Published 2021 Jan 4. [32] Lau CS,Park SY,Ethiraj LP,et al.Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration.Int J Mol Sci.2024; 25(12):6805.Published 2024 Jun 20. [33] Wen Z,Li S,Liu Y,et al.An engineered M2 macrophage-derived exosomes-loaded electrospun biomimetic periosteum promotes cell recruitment,immunoregulation,and angiogenesis in bone regeneration.Bioact Mater.2025;50:95-115.Published 2025 Apr 5. [34] Tao SC,Yuan T,Zhang YL,Yin WJ,Guo SC,Zhang CQ.Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model.Theranostics.2017; 7(1):180-195.Published 2017 Jan 1. [35] Darby IA,Hewitson TD.Hypoxia in tissue repair and fibrosis.Cell Tissue Res.2016;365(3):553-562. [36] 李娜.骨髓间充质干细胞移植治疗大鼠痛风肾[D].山西医科大学,2017. [37] Li L,Cheng D,An X,et al.Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats.Int Immunopharmacol. 2021;99:108000. [38] Lee,J.,Kim,H.S.,Kim,S.M.,Kim,D.I.,and Lee,C.W.Hypoxia upregulates mitotic cyclins which contribute to the multipotency of human mesenchymal stem cells by expanding proliferation lifespan.Mol Cells 41,207,2018. [39] Hung,S.P.,Ho,J.H.,Shih,Y.R.,Lo,T.,and Lee,O.K.Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells.J Orthop Res 30,260,2012. [40] Sheng,L.,Mao,X.,Yu,Q.,and Yu,D.Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells.Exp Ther Med 13,55,2017. [41] Li,L.,Li,L.,He,L.,et al.Effects of Apelin-13 on rat bone marrow-derived mesenchymal stem cell proliferation through the AKT/GSK3β/ Cyclin D1 pathway.Int J Peptide Res Ther 20,421,2014. [42] Zhang,Y.,Lv,J.,Guo,H.,Wei,X.,Li,W.,and Xu,Z.Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway.Cell Biochem Funct 33,51,2015. [43] Lee,J.H.,Yoon,Y.M.,and Lee,S.H.Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α- GRP78-Akt Axis.Int J Mol Sci 18,2017.[Epub ahead of print]. [44] Jiang,C.,Sun,J.,Dai,Y.,et al.HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia.Stem Cell Res Ther 6,21,2015. [45] Kang,I.,Lee,B.C.,Choi,S.W.,et al.Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia.Exp Mol Med 50,1,2018. [46] Tamama,K.,Kawasaki,H.,Kerpedjieva,S.S.,Guan,J.,Ganju,R.K.,and Sen,C.K.Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition.J Cell Biochem 112,804,2011. [47] Hsu,S.H.,Chen,C.T.,and Wei,Y.H.Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells.Stem Cells 31,2779,2013. [48] Yang,D.C.,Yang,M.H.,Tsai,C.C.,Huang,T.F.,Chen,Y.H.,and Hung,S.C.Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST.PLoS One 6,e23965,2011. [49] Taheem,D.K.,Foyt,D.A.,Loaiza,S.,et al.Differential regulation of human bone marrow mesenchymal stromal cell chondrogenesis by hypoxia inducible factor-1αhydroxylase inhibitors.Stem Cells 36,1380,2018. [50] Duval,E.,Baugé,C.,Andriamanalijaona,R.,et al.Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering.Biomaterials 33,6042,2012. [51] Khan,W.S.,Adesida,A.B.,and Hardingham,T.E.Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients.Arthritis Res Ther 9,R55,2007. [52] Lee,H.H.,Chang,C.C.,Shieh,M.J.,et al.Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect.Sci Rep 3,2683,2013. [53] Leijten,J.,Georgi,N.,Moreira Teixeira,L.,van Blitterswijk,C.A.,Post,J.N.,and Karperien,M.Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate.Proc Natl Acad Sci U S A 111,13954,2014. [54] Collino F,Lopes JA,Corrêa S,et al.Adipose-Derived Mesenchymal Stromal Cells Under Hypoxia:Changes in Extracellular Vesicles Secretion and Improvement of Renal Recovery after Ischemic Injury.Cell Physiol Biochem.2019;52(6):1463-1483.
Full Text:
DOI