人工智能在肺空洞性疾病诊断中的研究进展

ISSN:2982-3676

EISSN:

语言:中文

作者
胡颖颖,雷志毅
文章摘要
肺空洞性疾病是一类常见且复杂的肺部疾病,指肺部组织坏死液化后,经由支气管排出,并引入空气形成,其常见病因包括肺结核、肺癌、肺脓肿及肺转移瘤等。目前,X线及CT已广泛应用于肺空洞性疾病治疗的影像学评估中,然而各类空洞的临床表现和影像学特征有相当大的交叉和重叠,使得其诊断和鉴别变得尤为困难,此外,庞大的影像资料需要影像科医师付出大量精力判读,在一定程度上不可避免的增加了漏诊、误诊可能。近年来,人工智能(AI)的快速发展为解决这些问题提供了新的思路和方法。本文综述了AI在肺空洞性疾病诊断中的最新研究进展,探讨了AI的基本原理及其在影像分析中的应用实例,强调其在临床应用中的潜力和未来发展方向,以期为相关领域的研究者和临床工作者提供有价值的参考和启示。
文章关键词
人工智能;肺空洞性疾病;影像组学;深度学习;诊断进展
参考文献
[1] Tiwari B,Adhikari S,Ghimire M,Singh S,Kafle A.Chronic Cavitary Pulmonary Aspergillosis:Complication of Pulmonary Tuberculosis.J Nepal Health Res Counc.2024;22(1):205-208. [2] Yichu S,Fei L,Ying L,Youyou X.Potential of radiomics analysis and machine learning for predicting brain metastasis in newly diagnosed lung cancer patients.Clin Radiol.2024 Jun;79(6):e807-e816. [3] Jiang C,Luo Y,Yuan J,You S,Chen Z,Wu M,Wang G,Gong J.CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.Eur Radiol.2020 Jul;30(7):4050-4057. [4] Currie G,Hawk KE,Rohren E,Vial A,Klein R.Machine Learning and Deep Learning in Medical Imaging:Intelligent Imaging.J Med Imaging Radiat Sci.2019;50(4):477-487. [5] Lin DJ,Johnson PM,Knoll F,Lui YW.Artificial Intelligence for MR Image Reconstruction:An Overview for Clinicians.J Magn Reson Imaging.2021;53(4):1015-1028. [6] Yan Q,Wang W,Zhao W,Zuo L,Wang D,Chai X,Cui J.Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics.BMC Pulm Med.2022 Jan 7;22(1):4. [7] 程明远.基于薄层CT影像组学模型对于空洞型肺癌与空洞型肺结核的相关性研究[D].南昌大学硕士学位论文,2022. [8] 王鹏飞.基于多期增强CT影像组学鉴别肺脓肿、空洞型肺结核与空洞型肺癌[D].承德医学院,2024. [9] Xing Z,Ding W,Zhang S,Zhong L,Wang L,Wang J,Wang K,Xie Y,Zhao X,Li N,Ye Z.Machine Learning-Based Differentiation of Nontuberculous Mycobacteria Lung Disease and Pulmonary Tuberculosis Using CT Images.Biomed Res Int.2020 Sep 29;2020:6287545. [10] Li Y,Wang B,Wen L,et al.Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis:a multicentre study[J].European Radiology,2023,33(1):391-400. [11]Zhang X,Dong X,Saripan MIB,et al.Deep learning PET/CT-based radiomics integrates clinical data:A feasibility study to distinguish between tuberculosis nodules and lung cancer.Thorac Cancer.2023;14(19):1802-1811. [12] Wu A,Luo L,Zeng Q,Wu C,Shu X,Huang P,Wang Z,Hu T,Feng Z,Tu Y,Zhu Y,Cao Y,Li Z.Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.Sci Rep.2024 Jul 13;14(1):16208. [13] Zheng Y,Zhou D,Liu H,Wen M.CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors.Eur Radiol.2022 Oct;32(10):6953-6964. [14] Dayan J,Goldman N,Waiger D,Melkman-Zehavi T,Halevy O,Uni Z.A deep learning-based automated image analysis for histological evaluation of broiler pectoral muscle.Poult Sci.2023;102(8):102792. [15] Li L,Zhou X,Cui W,et al.Combining radiomics and deep learning features of intra-tumoral and peri-tumoral regions for the classification of breast cancer lung metastasis and primary lung cancer with low-dose CT.J Cancer Res Clin Oncol.2023; 149(17):15469-15478. [16] Lee G,Park H,Bak SH,Lee HY.Radiomics in Lung Cancer from Basic to Advanced:Current Status and Future Directions.Korean J Radiol.2020;21(2):159-171. [17] Xu X,Wang H,Guo Y,et al.Study Progress of Noninvasive Imaging and Radiomics for Decoding the Phenotypes and Recurrence Risk of Bladder Cancer.Front Oncol.2021;11:704039. [18] Miller RJH.Artificial Intelligence in Nuclear Cardiology.Cardiol Clin.2023;41(2):151-161. [19] Prinzi F,Currieri T,Gaglio S,Vitabile S.Shallow and deep learning classifiers in medical image analysis.Eur Radiol Exp.2024; 8(1):26.Published 2024 Mar 5. [20] Li J,Zhang T,Ma J,Zhang N,Zhang Z,Ye Z.Machine-learning-based contrast-enhanced computed tomography radiomic analysis for categorization of ovarian tumors.Front Oncol.2022 Aug 9;12:934735. [21] Midiri A,Malatino C,Biondo C,Zummo S,Mancuso G.An unusual presentation of pulmonary aspergilloma and review of available literature.Eur Rev Med Pharmacol Sci.2022;26(14):5103-5106. [22] Çınar C,Kocakaya D,Olgun Yıldızeli S,Karakurt S.Lung Cavitation as a Long-Term Imaging Pattern of COVID-19.Cureus.2023;15(6):e39825. [23] Murphree DH,Puri P,Shamim H,et al.Deep learning for dermatologists:Part I.Fundamental concepts.J Am Acad Dermatol.2022;87(6):1343-1351. [24] Cullell-Dalmau M,Otero-Viñas M,Manzo C.Research Techniques Made Simple:Deep Learning for the Classification of Dermatolo- gical Images.J Invest Dermatol.2020;140(3):507-514. [25] Chen X,Wang X,Zhang K,et al.Recent advances and clinical applications of deep learning in medical image analysis.Med Image Anal.2022;79:102444. [26] Pang T,Li P,Zhao L.A survey on automatic generation of medical imaging reports based on deep learning.Biomed Eng Online.2023;22(1):48. [27] Cheze Le Rest C,Hustinx R.Are radiomics ready for clinical prime-time in PET/CT imaging?.Q J Nucl Med Mol Imaging.2019;63(4):347-354.
Full Text:
DOI