作者
Muhammad Chrissandy Fahzy,Yonas Paskah Pardede,Danel Reka Yesa,Mohd Raden Bahi,Kaprawi Sahim
文章摘要
在传热工程中,大多数圆形截面的管子被应用于热交换器中,但也有可能使用圆形以外的管子来提高传热率。本实验研究介绍了不同截面管子的传热率性能:圆形、椭圆形、方形和三角形管子。这些管子的外表面以均匀热流加热,水在管子内流动。实验期间测量了重要参数。结果显示,传热效果随截面类型而变化。三角形和椭圆管子的传热率比其他横截面形状高。
文章关键词
对流传热;管子;传热性能;入口长度;恒定热流
参考文献
[1] A. Saleh, S. Rasheed, and R. Smasem, “Convection Heat Transfer in a Channel of Different Cross Section Filled with Porous Media,” Kufa J. Eng., vol. 09, no. 02, pp. 57–73, 2018, doi: 10.30572/2018/kje/090205. [2] S. A. Rasheed and J. M. Abood, “Force Convection Heat transfer from a Different Cross Section Cylinder Embedded in Porous Media,”
J. Eng. Sci., vol. 20, no. 3, pp. 727–736, 2017, doi: 10.13140/RG.2.2.14800.25600. [3] K. Sutthivirode and T. Suparos, “A study of forced convection heat transfer: Constant heat flux,” Proc. 2018 5th Int. Conf. Bus. Ind. Res. Smart Technol. Next Gener. Information, Eng. Bus. Soc. Sci. ICBIR 2018, pp. 236–241, 2018, doi: 10.1109/ICBIR.2018.8391199. [4] P. Bisht, M. Joshi, and A. Gupta, “Comparison of Heat Transfer between a Circular and Rectangular Tube Heat Exchanger by using
Ansys Fluent,” Int. J. Therm. Technol., vol. 4, no. 2, pp. 88–92, 2014. [5] W. Dang and L. B. Wang, “Convective heat transfer enhancement mechanisms in circular tube inserted with a type of twined coil,” Int. J. Heat Mass Transf., vol. 169, p. 120960, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.120960. [6] S. M. Elsherbiny, M. A. Teamah, and A. R. Moussa, “Experimental mixed convection heat transfer from an isothermal horizontal square
cylinder,” Exp. Therm. Fluid Sci., vol. 82, pp. 459–471, 2017, doi: 10.1016/j.expthermflusci.2016.12.002. [7] S. Zeinali Heris, F. Oghazian, M. Khademi, and E. Saeedi, “Simulation of Convective Heat Transfer and Pressure Drop in Laminar Flow of Al2O3/water and CuO/water Nanofluids Through Square and Triangular Cross-Sectional Ducts,” J. Renew. Energy Environ., vol. 2, no. 1, pp. 6–18, 2015.[8] R. Kumar, Varun, and A. Kumar, “Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review,” Renew. Sustain. Energy Rev., vol. 61, pp. 123–140, 2016, doi: 10.1016/j.rser.2016.03.011. [9] Y. S. Muzychka and M. M. Yovanovich, “Laminar forced convection heat transfer in the combined entry region of non-circular ducts,” J. Heat Transfer, vol. 126, no. 1, pp. 54–61, 2004, doi: 10.1115/1.1643752. [10] M. Norouzi, M. M. Shahmardan, M. Davoodi, and M. Mahmoudi, “An Exact Solution for Fluid Flow and Heat Convection through
Triangular Ducts Considering the Viscous Dissipation,” AUT J. Mech. Eng. AUT, vol. 3, no. 2, pp. 197–204, 2019, doi: 10.22060/ajme.2018.14630.5737. [11] M. Venkateswara Rao, P. V. Ravi Kumar, and P. S. Sankara Rao, “Laminar flow heat transfer in concentric equilateral triangular annular channels,” Indian J. Chem. Technol., vol. 13, no. 6, pp. 614–622, 2006. [12] M. Yang, X. Wang, Z. Wang, Z. Li, and Y. Zhang, “Correlation for Turbulent Convection Heat Transfer in Elliptical Tubes by
Numerical Simulations,” Front. Heat Mass Transf., vol. 7, no. 11, pp. 1–6, 2018, doi: 10.5098/hmt.11.7. [13] D. Taler and J. Taler, “Simple heat transfer correlations for turbulent tube flow,” E3S Web Conf., vol. 13, pp. 1–7, 2017, doi: 10.1051/e3sconf/20171302008. [14] S. Kaprawi, P. Dewi,Nukman, “Experimental Study Of Convective Heat Transfer Of Alumina Oxide Nanofluids In Triangle Channel
With Uniform Heat Flux,” Front. Heat Mass Transf. (FHMT), vol. 22, no. 16, pp. 1–6, 2021, doi: 10.5098/hmt.16.22. [15] M. M. Janjua, N. U. Khan, W. A. Khan, W. S. Khan, and H. M. Ali, “Numerical study of forced convection heat transfer across a
cylinder with various cross sections,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2039–2052, 2021, doi: 10.1007/s10973-020-10297-7.
Full Text:
DOI