粘土研究,以诺马约斯-喀麦隆为例: 含有30%棕榈仁壳粉的粘土砖的热物理和化学力学表征

ISSN:2705-0998(P)

EISSN:2705-0513(O)

语言:中文

作者
哈姆卡·哈姆卡·阿道夫·克劳德尔,乔米·罗兰,尚塔尔·玛格丽特,乔唐·西奥多,图瓦尼·丘勒芭菲,恩戈赫·埃卡姆·保罗·所罗门
文章摘要
本文介绍的工作包括证明粘土和棕榈坚果壳粉的混合物可用于生产生粘土砖。为此,我们对棕榈仁壳粉末和诺马约斯泥质地面产生的粘土的混合物进行了表征,这是出版物的主题。然后,我们用0%的负载和30%的负载制造砖,我们在物理,化学,热和机械上表征了这些砖。物理表征的结果使我们能够得出结论,当材料负载30%的棕榈仁壳粉末时,材料的密度降低,但在相同百分比的负载下增加和改善抗弯曲和抗压缩性。对于热表征的结果,ATG,DSC和DTG显示:对于粘土砖,自由水,高岭石,伊利石和石英的存在比例很大,证实了这种粘土是高岭石类型。对于贝壳,存在游离水,纤维素和木质素;对于含有30%棕榈仁壳粉的混合物,游离水,高岭石,伊利石,石英,纤维素和木质素的存在表明混合物中存在粘土和贝壳。对于化学表征结果,FTIR显示:对于粘土,在2931cm-1和2865cm-1处存在吸附带,在1554cm-1,1494cm-1和693cm-1处存在吸收峰,在1307cm-1附近存在峰。对于壳体,强度带在2924.39cm-1处存在,细带的平均强度在1509.08cm-1和1606.26cm-1之间,强度峰值在1372.10cm-1和1317.91之间,然后是1239.65-1030.05cm-1。对于粘土壳混合物,在2931cm-1和2865cm-1处存在吸附带对应于-CH2基团的不对称和对称伸长振动,表明粘土硅烷的存在。1239.65和1030.05cm-1之间的强度峰值可归因于醇,Esther,醚,无定形二氧化硅或纤维素和木质素的-C-O键的-C-O基团,表明混合物中存在壳。
文章关键词
粘土砖;ATG;IRTF;抗压强度;抗弯强度
参考文献
[1] Imen, S., & Belouettar, R. (2011). Mechanical behavior of mud bricks reinforced with date palm and straw fibers. INVACO2 International Seminar, Innovation & Valorization in Civil Engineering & Building Materials, (2p-118). [2] de Chazelles, C. A., & Klein, A. (2003). Transdisciplinary exchanges on raw earth constructions. 1. Shaped, cut or cased earth. Materials and methods of implementation. Doi: https://halshs.archives-ouvertes.fr/halshs-00548079 [3] Chanvillard, G. (1999). Modeling the pullout of wire-drawn steel fibers. Cement and Concrete Research, 29 (7), 1027-1037. Doi: https://doi.org/10.1016/S0008-8846(99)00081-2 [4] Doat, P., Hays, A., Houben, H., Matuk, S., & Vitoux, F. (1979). Building with earth. Alternative and parallel editions. Doi: http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALBTP8080279395 [5] Guillaud, H., Cope, R., Odul, P., Doat, P., Houben, H., & Verney, P. E. (1986). Scientific and technical approach to the earth material (Doctoral dissertation, CRATerre; CSTB; Ministry of Research and Technology). Doi: https://hal.archives-ouvertes.fr/hal-03162175 [6] Kazmi, S. M., Abbas, S., Saleem, M. A., Munir, M. J., & Khitab, A. (2016). Manufacturing of sustainable clay bricks: Utilization ofwaste sugarcane bagasse and rice husk ashes. Construction and building materials, 120, 29-41. Doi: https://doi.org/10.1016/j.conbuildmat.2016.05.084 [7] Munir, M. J., Kazmi, S. M. S., Wu, Y. F., Hanif, A., & Khan, M. U. A. (2018). Thermally efficient fired clay bricks incorporating waste marble sludge: An industrial-scale study. Journal of cleaner production, 174, 1122-1135. Doi:https://doi.org/10.1016/j.jclepro.2017.11.060 [8] Javed, U., Khushnood, R. A., Memon, S. A., Jalal, F. E., & Zafar, M. S. (2020). Sustainable incorporation of limebentonite clay composite for production of ecofriendly bricks. Journal of Cleaner Production, 263, 121469. Doi: https://doi.org/10.1016/j.jclepro.2020.121469 [9] Hongrattanavichit, I., & Aht-Ong, D. (2020). Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. Journal of Cleaner Production, 277, 123471. Doi: https://doi.org/10.1016/j.jclepro.2020.123471 [10] Misse, S. E., Obounou, M., Ohandja, L. A., & Caillat, S. (2013). Use of palm kernel shells as fuel in a scrap metal melting furnace. Journal of Renewable Energies, 16(1), 75-89. Doi: https://doi.org/10.54966/jreen.v16i1.365 [11] De la Torre Chauvin, E. H. (2015). Preparation of activated carbon from oil palm nut shells for gold recovery and cyanide effluent treatment (Doctoral dissertation, UCL- Catholic University of Louvain). http://hdl.handle.net/2078.1/155680 [12] Hidayu, A. R., Sukor, M. Z., Mohammad, N. F., Elham, O. S. J., Azri, N. I., Azhar, M. A. I., & Jalil, M. J. (2019, November). Preparation of activated carbon from palm kernel shell by chemical activation and its application for β-carotene adsorption in crude palm oil. In Journal of Physics: Conference Series (Vol. 1349, No. 1, p. 012103). IOP Publishing. doi: 10.1088/1742-6596/1349/1/012103. [13] Djomi, R., Meva’a, L. J. R., Nganhou, J., Mbobda, G., Njom, A. E., Bampel, Y. D. M., & Tchinda, J. B. S. (2018). Physicochemical and Thermal Characterization of Dura Palm Kernel Powder as a Load for Polymers: Case of Polyvinyl Chloride. Journal of Materials Science and Chemical Engineering, 6 (6), 1-18. Doi: 10.4236/msce.2018.66001. [14] Riyap, H. I., Banenzoué, C., Tchakouté, H. K., Nanseu, C. N., & Rüscher, C. H. (2021). A comparative study of the compressive strengths and microstructural properties of geopolymer cements from metakaolin and waste fired brick as aluminosilicate sources. Journal of the Korean Ceramic Society, 58 (2), 236-247. https://doi.org/10.1007/s43207-020-00097-y [15] Olembe, Y. R., Fokam, C. B., Tchotang, T., Djomi, R., Kenmeugne, B., & François, M. L. M. (2021). Investigation of the Physical, Mechanical and Chemical Properties of the Marrow of Raffia Hookeri. Journal of Natural Fibers, 1-13. https://doi.org/10.1080/15440478.2021.1961337 [16] Huisken, P. W. M., Tchemou, G., Tagne, N. R. S., Ndapeu, D., & Njeugna, E. (2022). Effect of the Addition of Oil Palm Mesocarp Fibers on the Physical and Mechanical Properties of a Polyester Matrix Composite. International Journal of Polymer Science, 2022. https://doi.org/10.1155/2022/3399986 [17] Limami, H., Manssouri, I., Cherkaoui, K., & Khaldoun, A. (2020). Study of the suitability of unfired clay bricks with polymeric HDPE & PET wastes additives as a construction material. Journal of Building Engineering, 27, 100956. https://doi.org/10.1016/j.jobe.2019.100956 [18] Belaid, F., & Chelouah, N. (2020). Study of the influence of Crushed Date Kernels (CDN) additions on the physicalmechanical and thermal characteristics of a compressed raw earth brick (CREB) (Doctoral dissertation, Abderrahmane Mira-Bejaia University). http://hdl.handle.net/123456789/13704 [19] Nshimiyimana, P. (2021). Influence of substitute materials on the microstructure and strength of compressed earth bricks. Academic Journal of Civil Engineering, 39 (1), 144-152. DOI: https://doi.org/10.26168/ajce.39.1.32 [20] Poullain, P., Leklou, N., Laibi, A. B., & Gomina, M. (2019). Properties of Compressed Earth Bricks Made from Traditional Materials from Benin. Journal of Composites and Advanced Materials, 29 (4). [21] Ouedraogo, M., Dao, K., Millogo, Y., Seynou, M., Aubert, J. E., & Gomina, M. (2017). Influence of kenaf (Hibiscus altissima) fibers on the physical and mechanical properties of adobes. Journal of the West African Chemical Society, 43, 48-63.[22] Laibi, B. (2017). Hygro-thermo-mechanical behavior of structural materials for construction combining kenaf fibers with clay soils (Doctoral dissertation, Normandie). [23] Osabor, V. N., Okafor, P. C., Ibe, K. A., & Ayi, A. A. (2009). Characterization of clays in Odukpani, south eastern Nigeria. African Journal of Pure and Applied Chemistry, 3 (5), 079-085. [24] Mrklić, Ž. & Kovačić, T. (1998). Thermogravimetric investigation of volatility of dioctyl phthalate from plasticized poly (vinyl chloride). Thermochimica acta, 322 (2), 129-135. https://doi.org/10.1016/S0040-6031(98)00479-1 [25] Shanmugharaj, A. M., Bae, J. H., Lee, K. Y., Noh, W. H., Lee, S. H., & Ryu, S. H. (2007). Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Composites Science and technology, 67 (9), 1813-1822. https://doi.org/10.1016/j.compscitech.2006.10.021 [26] Benbayer, C. (2014). Nanocomposites based on clay and polymerizable surfactants (surfmers): synthesis and properties (Doctoral dissertation, Université Nice Sophia Antipolis). https://tel.archives-ouvertes.fr/tel-01142111 [27] Qtaitat, M. A., & Al-Trawneh, I. N. (2005). Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61 (7), 1519-1523. https://doi.org/10.1016/j.saa.2004.11.008 [28] Risite, H. (2015). Polymer/montmorillonite nanocomposites: Role of interactions generated by clay/polymer modification on morphology and structural, thermal, rheological and mechanical properties. [29] Hongping, H., Ray, F. L., & Jianxi, Z. (2004). Infrared study of HDTMA+ intercalated montmorillonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (12), 2853-2859. https://doi.org/10.1016/j.saa.2003.09.028 [30] Belver, C., Bañares Muñoz, M. A., & Vicente, M. A. (2002). Chemical activation of a kaolinite under acid and alkaline conditions. Chemistry of materials, 14 (5), 2033-2043. https://doi.org/10.1021/cm0111736
Full Text:
DOI