有机肥处理土壤表层和根际微生物分析

ISSN:2705-0998(P)

EISSN:2705-0513(O)

语言:中文

作者
Aniefon Alphonsus Ibuot,Iniobong Ime James,Mayen Godwin Ben,Christiana Utibe Etuk,Agnes Monday Jones,Emmanuel Anthony Umoren,Elizabeth Lazarus Akpan,Esther Ndarake Akpan
文章摘要
对有机肥料(家禽粪便)处理的表土和根际土壤进行了微生物分析。每隔三天(第1天、第4天、第7天和第10天)分析土壤样品。用家禽粪便处理的根际土壤的细菌总数(RS:P)最高,在2.1×106和5.7×106 CFU/g之间。用家禽粪便处理的表层土壤的细菌总数在1.9×106和4.9×106 CFU/g之间。对照组(未处理的根际土壤)的细菌总数在2.6×106和4.0×106 CFU/g之间,未处理的表层土壤的细菌数在1.4×106和2.4×106 CFU/g之间。用家禽粪便处理的表土真菌总数在0.2×106和0.9×106 CFU/g之间。用家禽粪便处理的根际土壤真菌总数在0.2×106和0.3×106 CFU/g之间。未处理的表层土壤的真菌总数在0.1×106和0.2×106 CFU/g之间,而未处理的根际土壤的真菌总量在0.1×106-0.2×106 CFU/g之间。根据其出现频率确定的细菌分离物为芽孢杆菌(16.8)、肠球菌(8.4)、梭菌(4.0)、葡萄球菌(8.0)、假单胞菌(15.6)、李斯特菌(12.0)、微球菌(14.0)、沙雷菌(4.8)和链球菌(7.2)。真菌分离物的发生率为根际菌属(26.7%)、青霉属(22.5%)、曲霉属(21.1%)、毛霉属(19.7%)和枝孢菌属(9.8%)。根系分泌的代谢物作为化学信号吸引大量微生物。在土壤中施用有机肥增加了土壤中的微生物数量,因此有必要在土壤中施有机肥,以促进农业可持续发展。
文章关键词
土壤;微生物;根际;有机肥料
参考文献
[1] Pelczar, M. J., Chan, E., Krieg, N. R. (2001). Microbiology: Concept and Application. International Edition McGraw- Hill USA Pp 281. [2] Domsch, K. H., Gawas, W., Anderson, T. H. (2003). Compendium of soil fungi. London Academic Press 859-860. [3] Ferando HC, Amanda V, Wright JS (1994). Tropical forest litter decomposition under seasonal drought nutrient release, fungi and bacteria. Oikos. (70): 183-190. [4] Miyanoto T, Igaraslic T, Takahashi K (2002). Lignin–degradation ability of litter decomposing basidomycetes from picea forest of Hokkaida Myco. sci. (41): 105-110. [5] Ibuot, A. A. and Bajhaiya, A (2013). Biodegradation of crude oil sludge using municipal solid waste as bulking agent. Asian Journal of Biological Sciences 6 (4) 207-213. [6] Higga, T. (2001). Effect Microorganism: A biotechnology for mankind U.S. Department of Agriculture USA (16). [7] Parr, J., Hornick, S. And Kaufmman, D. (2004) Use of microbial inoculants and organic fertilizers in Agricultural production Published by the food and fertilizer technology center Tapei 91 (32). [8] Cheesbrough, M. (2006). District Laboratory practice in tropical countries (part 2) Cambridge University Press. Hon Kong. Pp 64-70. [9] Bergey (1989). Bergey’s manual of systematic bacteriology Sterley JT (Ed). Vol. 3 Williams and Eilkins, Baltimore. p. 450. [10] Nihorimbere, V., Ogena, M., Thonart, P. (2016). Beneficial effect of the Rhizosphere microbial community for plant growth and health. BASE 15: 2. [11] Dundas, E., Paul, O., John, H. (2002). Mashavira is dated the Jains London ISBN 0-415. [12] Amir, H., Pineau R., (1998). Influence of plant and cropping on microbiological characteristics of some new Caledonian ultamatic soils. Aust. J. Soil Res. 36, 3: 457-470. [13] Okoh, L. A., Badejo, M. A., Nathaniel, I. T., Tian G. (1999). Studies on the bacteria, fungi, and springtails (Collembola) of an agroforestry arboretum in Nigeria. Pedobio 43: 18-27. Olivier, R., Bacchin, P., Robertiello, A., Oddo, N., Degen, L., And Tonolo, A., 2006. Microbial degradation of soil spills enhanced by a slow release fertilizer. App. Environ. Microbiol. 31: 629-634. [14] O’ Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001). Plants and Fertilizers as drivers of change in microbial community structure and function in soil. Plant Soil (232): 135-45. [15] Olivier, R., Bacchin, P., Robertiello, A., Oddo, N., Degen, L., And Tonolo, A., 2006. Microbial degradation of soil spills enhanced by a slow release fertilizer. App. Environ. Microbiol. 31: 629-634.
Full Text:
DOI