作者
谢 江,赖华泉
文章摘要
土体崩解性受矿物组分及胶结结构的影响,土体在水化作用下丧失胶结结构后,矿物组分的不同决定其泥化崩解的形式及速率,主要在于土体内部矿物形态的不一致、可溶及易软化矿物、矿物的转换、黏土矿物膨胀等,从而产生的微孔隙和微裂纹,毛细管压力和气体压力的增加导致微孔隙和微裂纹的发展与贯通,最终导致土体崩解离体。
文章关键词
矿物组分;土体崩解;孔隙
参考文献
[1] Qi, Y., Liu, Y., Yang, Z.H., Zhen, X.U., Fang, M., Gis-based analysis of landslide and debris flow hazard in Lanzhou[J]. Journal of
Glaciology and Geocryology, 2012, 34 (1):96–104. [2] Arpita Nandi, Mick Whitelaw. Effect of physico-chemical factors on the disintegration behavior of calcareous shale[J]. Environmental
& Engineering Geoscience, 2009: 15(4): 273-285. [3] Gasc Barbier M, Merrien Soukatchoff V, Virely D. The role of natural thermal cycles on a limestone cliff mechanical behaviour[J]. Engineering Geology,2021, 293: 106293. [4] Zhang X, Liu, X, et al. Evolution of disintegration properties of granite residual soil with microstructure alteration due to wetting and
drying cycles[J]. Bull Engineering Geology Environ, 2022, 81:93. [5] 梁冰,谭晓引,姜利国,等.冻-融及干-湿循环对泥质岩崩解特性影响的试验研究[J].岩土工程学报,2016,38(04):705-711. [6] 邓涛,黄明,詹金武.不同 pH 环境下黏土类岩崩解过程分形演化规律[J].同济大学学报(自然科学版),2014,42(10):1480-1485. [7] Yamaguchi H, Yoshida Y, et al. Slaking and Shear Properties of Mudstone[J]. 1988, 24(3):133–144. [8] An W B, Wang L G, et al. Mechanical properties of weathered feldspar sandstone after experiencing dry-wet cycles[J]. Advances in Materials Science and Engineering, 2020, 6268945. [9] 孙光远,王哲麟,刘培刚,张志强.碱性长石溶蚀微孔发育特征及其对致密砂岩储层物性的改造作用--以鄂尔多斯盆地华庆地区三
叠系延长组 6 段 3 亚段为例[J].石油与天然气地质,2022,43(03):658-669. [10] Mo P, Luo J H. Classification and disintegration characteristics of the carboniferous rocks in Guangxi, China[J]. Advances in Civil
Engineering,2021, 8929808. [11] Shakoor A, Gautam T P. Influence of Geologic and Index Properties on Disintegration Behavior of Clay-Bearing Rocks[J]. Environmental and Engineering Geoscience, 2015, 21(3): 197–209. [12] 陈中学,汪稔,胡明鉴,王志兵,徐东升.黏土颗粒含量对蒋家沟泥石流启动影响分析[J].岩土力学,2010,31(07):2197-2201.
Full Text:
DOI