柔性路面应力应变和挠度的有限元分析 ——以巴科-内格默特公路为例

ISSN:2705-0998(P)

EISSN:2705-0513(O)

语言:中文

作者
Shiferaw Garoma Wayessa,Emer Tucay Quezon,Tarekegn Kumela
文章摘要
在埃塞俄比亚,道路故障发生在移交期之前。埃塞俄比亚的大多数道路都是柔性路面。目前,柔性路面路面在预期设计期之前出现路面破损的情况非常普遍。例如,巴科-内格默特公路已成为我国的一个关键问题。导致道路应力、应变和变形的最常见参数是来自车辆的载荷和压力。此外,需要表征每层的弹性模量、泊松比和厚度。此外,还为所考虑的每个负载(车轮)定义了负载大小、接触压力(或负载半径)和位置。有限元法(FEM)是一种数值分析技术,用于获得各路面层的应力应变和挠度。分析方法通常使用路面材料的层厚、荷载、弹性模量和泊松比作为设计参数。本研究的目的是研究道路参数在分析沥青路面层疲劳开裂和车辙变形的主要原因时的敏感性,这些主要原因是由沥青层底部的临界拉伸应变和路基顶部的临界压缩应变引起的ERA规范和实验室测试结果。本文采用Everstress有限元方法研究了柔性路面的应力应变和挠度分析。Everstress程序将考虑任何与应力相关的刚度特性。本文讨论了通过改变设计配置来减少挠度的方法,如增加HMA模量、基底模量、底基层模量、路基模量和增加每层厚度。根据所用材料的类型,弹性模量和毒物比率的值在每层中是不同的,在层1中从1500到3500MPa变化,在层2中从200到1000MPa变化,在第3层中从100到250MPa变化,而在层4中从20MPa到150MPa变化。
文章关键词
有限元分析;柔性路面;层厚;模量和垂直表面变形
参考文献
[1] Burmister, D. (1945). The general theory of stresses and displacements in layered soil system. journal of applied physics,, vol. 16, pp. 84-94, 126-126-127, 296-302. [2] De Beer M; Fisher C & Jooste F. (1997). Determination of Pneumatic Tire Pavement Interface Contact Stresses Under Moving Loads and Some Effects on Pavements with Thin Asphalt Surfacing Layers. Proceedings of 8th International Conference on Asphalt Pavements (Volume I), Seattle, Washington, pp. 179-227. [3] Emmanuel O, E. a. (2009). Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, Vol. 3 (1 2), pp. 41 2-421. [4] Garba, R. (2002). A Thesis on Permanent Deformation properties of Asphalt Concrete mixtures. Department of Road and Railway Engineering, Norwegian University of Science and Technology. [5] Gupta. (2014). COMPARATIVE STRUCTURAL ANALYSIS OF FLEXIBLE PAVEMENTS USING FINITE ELEMENT METHOD. The International Journal of Pavement Engineering and Asphalt Technology,, Volume: 15, pp.11-19. [6] Huang Y. H. (1993). Pavement Analysis and Design. Englewood Cliffs, New Jersey, Prentice-Hall. [7] Institute Asphalt. (1982). Research and Development of Asphalt Institute’s Thickness Design Manual. 9th Ed, Research Report 82-2. [8] Lanham. (1996). National Asphalt Pavement Association Research and Education Foundation. Maryland. [9] Machemehl R, Wang F & Prozzi J. (2005). Analytical study of effects of truck tire pressure on pavements with measured tire-pavement contact stress data. Transportation Research Record: J. Transp. Res. Board, 1919: 111-119. [10] Markshek, K, Chen, H, & Hudso, R. C. (1986). Experimental Determination of Pressure Distribution of Truck Tire Pavement Contact,in Transportation Research Record 1070. pp.197-206. [11] Ralph H.; Susan T.; Guy D.& David H. (2007). Mechanistic-Empirical pavement design. Evolution and future challenges. Canada.: Saskatoon. [12] Shane Buchanan, (2007). Vulcan Materials Company, RESILIENT MODULUS: WHAT, WHY, AND HOW?Taneerananon, Somchainuek, Thongchim, & Yandell. (2014). ANALYSIS OF STRESS, STRAIN AND DEFLECTION OF PAVEMENTS USING FINITE ELEMENT. Journal of Society for Transportation and Traffic Studies, Vol. 1 No. 4. [13] Yang, H. (1973). Asphalt Pavement Design – The Shell Method, Proceedings. 4th International Conference on Structural Design of Asphalt Pavements. [14] Zaghloul S and White, T. (1993). Use of a ThreeDimensional, Dynamic Finite Element Program for Analysis of Flexible Pavement. In Transportation Research Record 1388, TRB, Washington D. C, pp. 6069.
Full Text:
DOI