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【摘 要】：乳腺癌分子分型是精准治疗与预后评估的核心依据，传统有创检测存在样本局限性与创伤风险，放射组学的发展为

预测分子分型提供了新的路径选择。本文系统综述放射组学在乳腺癌分子分型预测中的研究进展，阐述乳腺癌分子分型标准与放

射组学核心原理，随后介绍乳腺钼靶摄影、磁共振成像（MRI）、超声等主流成像技术在放射组学中的应用基础，以及特征提取、

选择降维、模型构建与评估的技术流程。重点总结单一模态与多模态融合放射组学的研究成果，证实多模态融合可显著提升预测

准确性。进而分析放射组学在治疗方案指导、预后评估中的临床价值，及其无创性、可重复性等优势以及与技术标准化不足、模

型泛化能力有限、生物学可解释性缺失等局限性。最后展望未来发展方向，提出需通过成像技术优化、新型算法研发实现技术创

新，通过多组学融合解析分子机制，通过多中心研究与临床工具开发推动技术转化。放射组学有望成为乳腺癌医疗体系的组成部

分，为实现个体化诊疗提供关键支撑。
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引言

乳腺癌是全球女性健康的主要威胁之一[1]，早期诊断与精

准治疗是提升患者生存率的关键，而分子分型作为影响治疗方

案、预后及复发的核心因素，其精准判别对个体化治疗实施非

常重要。当前临床采用的免疫组织化学（IHC）、原位杂交（ISH）

等分子分型检测手段具有有创性，且受肿瘤异质性影响，单点

穿刺样本难以全面反映肿瘤整体分子特征。医学影像的无创性

与可重复性优势显著，而放射组学作为新兴影像分析技术，可

从影像中高通量提取深层次特征，量化肿瘤异质性并挖掘影像

生物标志物，为预测乳腺癌分子分型提供了新的路径，具有重

要临床价值与研究意义。相较于传统影像学的主观定性分析，

放射组学通过挖掘肉眼不可见的影像信息并转化为定量参数，

可更客观、全面地反映肿瘤生物学特征，为突破传统有创检测

的局限提供了技术支撑。

依据 2013年 St Gallen共识，乳腺癌主要分为 4种分子亚

型，各亚型在生物学行为、治疗反应及预后上差异显著：

Luminal A型（HER2阴性、ER+、PR高表达、Ki-67低表达）

恶性程度低、预后好，以内分泌治疗为主；Luminal B 型（分

HER2阴性/阳性，ER+，HER2阳性者需联合靶向治疗）需内

分泌治疗联合化疗；HER2过表达型（ER-、PR-、HER2+）恶

性程度高，采用化疗联合抗 HER2靶向治疗；三阴型（HER2-、

ER-、PR-）缺乏靶向及内分泌治疗靶点，依赖化疗，预后差、

复发风险高[2]。精准的分子分型是临床制定个性化治疗方案的

前提。

放射组学基于多模态成像数据与临床基线信息，通过专业

软件及算法提取肿瘤的纹理、形状、直方图、强度等深层次特

征，其核心原理在于肿瘤影像学表现与微观结构、细胞组成、

血管分布及生物学行为的内在关联[3]。传统影像学依赖主观观

察，而放射组学可通过灰度共生矩阵（GLCM）、游程长度矩

阵（RLM）等模型捕捉肿瘤异质性信息，通过形态学特征描述

病变空间分布，通过强度直方图反映像素灰度分布特性。通过

关联这些定量特征与 ER、PR、HER2及 Ki-67表达水平，可实

现乳腺癌分子亚型的术前无创预测，为临床提供客观、全面的

诊断依据。

本研究系统综述放射组学在乳腺癌分子分型预测中的研

究进展，明确其应用价值、核心挑战及发展方向。当前放射组

学研究仍面临三大关键问题：一是影像采集、预处理、特征提

取及分析算法缺乏统一标准，导致研究结果可比性与可重复性

差；二是放射组学特征与分子分型的生物学关联尚未明确，研

究多停留在统计学相关层面，机制阐释不足；三是现有模型多

为单中心回顾性研究，样本量小且缺乏外部验证，泛化能力有

限。解决上述问题、提升预测准确性与可靠性，是当前领域研

究的核心方向。

1 放射组学技术基础

（1）乳腺钼靶

乳腺钼靶是乳腺癌筛查与诊断的基础手段，利用低能量 X

射线穿透乳腺组织，依据不同组织吸收差异成像，可清晰显示

微小钙化灶、肿块等病变。微小钙化灶（尤其是成簇分布的特

定形态钙化）是早期导管原位癌的重要标志，肿块的边界、形

态等特征也为诊断提供关键依据[4]。

在放射组学应用中，乳腺钼靶图像可提取肿块边缘、密度、

钙化分布等特征用于分子分型预测。研究证实，肿块边缘特征、

钙化与否与分子分型显著相关（P＜0.01），如三阴型和 Luminal

A型多为肿块型，三阴型罕见钙化，Luminal A型更易出现边

缘毛刺。结合这些特征与机器学习算法构建的预测模型，可实



现代医学创新与实践 第 1卷第 03 期 2025 年

29

现对 Luminal A 型与非 Luminal A 型的有效鉴别，准确率达

75%、AUC 为 0.80，为术前分型提供参考。但其对致密型乳腺

诊断准确性有限，且结果易受图像质量影响[5]。

（2）磁共振成像（MRI）

MRI基于原子核磁共振现象成像，通过射频脉冲激发氢原

子核产生信号并处理成像，具有高软组织分辨率、高敏感性的

优势，适用于致密型乳腺、微小病灶检测及肿瘤分期评估。其

多序列成像（T1WI、T2WI、扩散加权成像等）可提供组织成

分、血流动态等丰富信息，其中动态对比增强MRI（DCE-MRI）

在分子分型预测中作用突出[6]。

DCE-MRI通过静脉注射对比剂获取时间-信号强度曲线，

其定量参数（容积转运常数 Ktrans、速率常数 Kep等）及纹理

特征可有效区分不同分子亚型。研究表明，Luminal型强化多

较均匀，HER2过表达型和三阴型强化更明显且不均匀，MRI

定量增强参数与乳腺癌预后因子及分子分型存在相关性。

（3）超声成像

超声成像利用超声波反射折射原理成像，具有实时性、无

辐射、价格低廉、方位灵活等特点，是乳腺病灶术前评估的常

用手段。其可清晰显示肿块形态、大小、边界、回声及血流信

号，乳腺癌多表现为形态不规则、边界模糊、回声不均匀、血

流丰富，但传统超声诊断主观性较强[5]。超声放射组学通过提

取纹理、形态等特征并结合机器学习算法，可客观预测乳腺癌

分子分型。

2 放射组学特征提取与分析

（1）特征提取方法

放射组学特征类型丰富，核心包括四类：一是一阶统计量

（熵、均匀性、峰度、均值等），描述感兴趣区域（ROI）信

号强度分布，不涉及空间关系；二是二阶统计量（纹理特征，

如 GLCM、游程长度矩阵等），反映相邻像素强度关系，是量

化肿瘤异质性的核心；三是形态大小特征（体积、最大直径、

球形度等），描述肿瘤空间几何属性；四是高阶统计量（小波

特征等），通过滤波或数学变换提取，可增强边缘、抑制噪声

[7]。

一阶统计量中，熵反映灰度分布随机性，均匀性反映灰度

同质性，峰度描述直方图尖锐程度，偏度反映直方图对称性，

标准差和方差衡量离散程度，这些参数可快速量化肿瘤整体密

度分布特征。二阶纹理特征中，GLCM 通过计算特定距离和方

向上相邻像素强度出现次数，衍生出对比度、相关性等参数；

局部二值模式可量化局部像素结构，反映肿瘤微环境；方向梯

度直方图可捕捉多方向梯度特征。形态特征中，体积通过像素

数量与体素大小计算，球形度描述肿瘤接近球体的程度，表面

积与体积比反映肿瘤细长程度。

特征提取需结合特征类型选择适配算法，如一阶统计量可

通过基础数学计算获得，GLCM等纹理特征需专用算法计算矩

阵参数，形态特征需结合几何计算与图像处理算法。目前

PyRadiomics等专业工具包已实现特征提取自动化，显著提升

了研究效率与规范性。

（2）特征选择与降维

特征选择与降维是放射组学研究的关键环节，核心目的是

解决特征冗余、避免“维数灾难”，提升模型效率与泛化能力。

放射组学提取的特征数量可达数百个，其中大量冗余或不相关

特征会增加计算负担、引入噪声，导致模型过拟合，因此必须

通过特征选择与降维优化数据。

常见特征选择方法分为三类：过滤式方法（卡方检验、

Pearson相关系数、互信息等），基于特征与目标变量的统计

关系筛选，计算快、不依赖模型；包裹式方法（如递归特征消

除法 RFE），以模型性能为评价指标迭代选择最优特征子集；

嵌入式方法（如 LASSO回归），在模型训练中通过正则化自

动实现特征选择。降维方法包括线性降维（主成分分析 PCA、

线性判别分析 LDA）和非线性降维（局部线性嵌入 LLE、等

距映射 Isomap），PCA通过线性变换保留数据主要信息，LDA

兼顾类别信息优化降维，非线性方法适用于复杂数据的局部结

构保留[8]。

（3）数据分析与建模

特征优化后，需通过机器学习或深度学习算法构建预测模

型，实现乳腺癌分子分型预测，并采用多维度指标评估模型性

能。模型构建与性能评估的科学性，直接决定放射组学研究的

临床应用价值。

常用机器学习算法包括支持向量机（SVM）、随机森林

（RF）、K近邻（KNN）等[9]。SVM 通过寻找最优分类超平

面处理小样本、非线性问题；RF 基于多决策树集成学习，稳

定性与泛化能力强；KNN基于样本距离实现分类，算法直观

简单。深度学习以卷积神经网络（CNN）为代表，具备自动特

征提取能力，可直接处理医学影像，减少人为干扰，显著提升

预测准确性。例如，将乳腺钼靶或MRI图像输入 CNN模型，

可自动学习深层特征模式并完成分子分型预测，无需手动提取

特征。

模型性能评估核心指标包括准确率、灵敏度（召回率）、

特异性、曲线下面积（AUC）[10]。准确率反映整体预测正确比

例，灵敏度衡量正样本识别能力，特异性体现负样本判断能力，

AUC是综合评价指标，值越大性能越好。为提升评估可靠性，

常采用 K折交叉验证，将数据集分为 K份轮流作为测试集，

多次训练评估后取平均值，可全面反映模型在不同数据子集的

表现，避免单一测试集导致的评估偏差。
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3 放射组学在乳腺癌分子分型预测中的最新应用

（1）乳腺钼靶放射组学研究

在乳腺钼靶放射组学应用方面，基于数字乳腺断层摄影

（DBT）的技术显示出良好的应用前景。一项包含 217 例浸

润性乳腺癌患者的研究系统评估了基于 DBT 的影像组学方

法在预测分子分型中的价值，其中 Luminal 型 167 例，非

Luminal 型 50 例。研究通过手动勾画感兴趣区域（ROI），

提取和筛选头尾位（CC 位）及内外侧斜位（MLO 位）影像

组学特征，采用逻辑回归（LR）算法建立 CC 位、MLO 位、

CC+MLO 位模型。结果显示，CC 位、MLO 位、CC+MLO 位

及联合临床模型在训练集和验证集中的 AUC 值分别为

0.800、0.789、0.853、0.873 和 0.753、0.715、0.846、0.865，

表明基于 DBT 的影像组学可在术前较精确地预测乳腺癌分

子分型[11]。

（2）MRI放射组学研究

在磁共振成像放射组学应用方面，多参数 MRI 放射组学

在分子分型预测中显示出较高的准确性。一项基于

TCGA/TCIA 数据集的研究利用定量放射组学方法，对 91 例

活检证实的浸润性乳腺癌 MRI 进行分析，结果表明计算机提

取的基于 MR 图像的肿瘤表型能够预测浸润性乳腺癌的分子

分类。在区分 ER + 与 ER-、PR + 与 PR-、HER2 + 与 HER2

- 以及三阴性与其他亚型的任务中，ROC 曲线下面积分别达

到 0.89、0.69、0.65 和 0.67[12]。

（3）超声放射组学研究

在超声成像放射组学应用方面，常规超声和增强超声的结

合使用显著提高了诊断效能。一项前瞻性研究包含 170 个病

灶（121 个恶性，49 个良性），其中恶性病灶进一步分为六

种分子亚型类别：（非）Luminal A、（非）Luminal B、（非）

HER2 过表达、（非）三阴性乳腺癌（TNBC）、激素受体（HR）

阳性 / 阴性和 HER2 阳性 / 阴性。研究结果显示，CUS 放

射组学模型预测六种乳腺癌类别的准确率分别为 68.2%、

69.3%、83.7%、86.7%、73.5% 和 70.8%，而 CUS 结合 CEUS

模型的准确率达到 85.4%，显著高于单独 CUS 模型的 81.3%

（p<0.01)[13]。

4 多模态成像融合的放射组学研究

多模态成像融合通过整合不同成像技术的优势，实现信息

互补，显著提升分子分型预测准确性。乳腺钼靶摄影对微小钙

化敏感，MRI提供高分辨率软组织及功能信息，超声可实时观

察形态与血流，三者融合可全面覆盖肿瘤宏观与微观特征，克

服单一模态的局限性。例如，X 线发现的钙化信息结合 MRI

的肿瘤内部结构描述及超声的血流特征，可更精准反映肿瘤生

物学特性，解决单一模态对致密型乳腺诊断困难、MRI高成本

等问题，为临床提供更可靠的预测依据。中山大学肿瘤防治中

心团队开展的多中心研究[14]，纳入 693例早期乳腺癌患者，提

取多切面灰阶超声图像特征（Resnet 18模型）和全切片病理图

像特征（注意力多实例学习模型），通过超声引导共注意力模

块融合特征构建深度学习影像病理组学模型（DLRP）。该模

型鉴别早期管腔型与非管腔型乳腺癌的 AUC 在内部验证集和

外部测试集分别为 0.929和 0.900，显著优于单一模态模型（超

声组 AUC 0.815、病理组 AUC 0.802）。另一项研究融合乳腺

钼靶、MRI、超声三模态影像特征，采用 SVM构建模型，对

200例患者的分子分型预测准确率达 85%、AUC为 0.90，显著

高于单一模态性能。这些研究证实，多模态融合可充分发挥各

成像技术的互补优势，是提升预测准确性的重要方向。

准确的分子分型预测是实现乳腺癌精准治疗的前提。不同

分子亚型的治疗敏感性差异显著，放射组学的术前无创预测可

帮助医生制定个性化治疗方案，提升疗效、减少无效治疗及副

作用，降低医疗成本。Luminal A型对内分泌治疗敏感、预后

好，术前放射组学确诊可避免过度化疗，减少恶心、脱发等不

良反应，提升患者生活质量；Luminal B 型需根据 HER2表达

调整方案，HER2阳性者需联合靶向治疗（如曲妥珠单抗），

精准预测可确保靶向药物及时应用，提升生存率 HER2过表达

型需化疗联合抗 HER2靶向治疗，早期精准预测可及时启动针

对性治疗，抑制肿瘤进展；三阴型缺乏靶向及内分泌治疗靶点，

主要依赖化疗，且易耐药，准确分型可帮助医生选择含铂类等

更有效的化疗方案，或探索免疫治疗等新型疗法，改善预后。

放射组学预测的分子分型是乳腺癌预后评估的重要依据。

不同亚型的复发风险与生存时间差异显著：Luminal A型预后

好、复发风险低，三阴型预后差、复发转移风险高。术前无创

预测分子分型，可帮助医生精准评估患者预后，制定个性化随

访监测计划。将放射组学分子分型与肿瘤大小、淋巴结转移、

病理分级等传统预后指标整合，可构建更精准的综合预后模

型。研究表明，整合模型能更准确预测患者无病生存期和总生

存期，对预后差的患者可加强随访频率，及时发现复发转移并

干预；对预后好的患者可减少随访次数，减轻其心理与经济负

担，提升医疗资源利用效率。

5 放射组学应用中的优势与局限性

放射组学临床应用核心优势有三：一是无创性，依托常规

影像分析获取分型信息，规避有创活检的痛苦、感染风险及样

本局限，患者接受度高；二是可重复性，通过标准化影像采集

与分析流程实现多次重复分析，支撑肿瘤动态监测与疗效评

估；三是客观性，借助定量特征挖掘传统影像不可见信息，减

少主观误差，提升预测准确性。

放射组学面临显著局限性，核心挑战及缺陷如下[15]：

（1）技术与数据层面：不同机构影像设备、扫描参数、

采集协议存在差异，特征提取算法不统一，影像生物标志物标
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准化倡议（IBSI）实施率不足 20%，导致结果可比性与可重复

性差；数据质量直接影响特征可靠性与模型性能，高质量影像

数据是研究前提，而数据标准化与归一化是当前核心难题，不

同软件对同一特征的计算算法差异也会造成特征值不一致，制

约结果整合与临床转化。

（2）模型可重复性与泛化能力不足：模型结果异质性源

于数据来源、技术方法及临床场景差异，小样本研究难以覆盖

全部亚型特征，进一步降低模型稳定性；现有模型多为单中心

回顾性构建，缺乏多中心大样本前瞻性验证，泛化能力不足，

难以适配不同医疗机构与患者群体，成为临床转化主要障碍。

（3）生物学可解释性不足：这是放射组学模型的核心缺

陷。当前模型多基于统计相关性实现预测，无法明确影像特征

与分子分型的内在生物学关联，呈“黑箱”特性。这既导致临

床医生因缺乏生物学依据难以信任并应用模型，也阻碍了肿瘤

分子机制挖掘、新型影像生物标志物发现及精准治疗靶点开

发，制约放射组学深度发展。

6 讨论

成像技术优化是提升放射组学性能的基础。高分辨率乳腺

钼靶、MRI及超声成像可更清晰显示肿瘤微观结构（如细胞排

列、微小血管分布），为特征提取提供更精准的素材，提升分

型预测准确性。例如，高分辨率 MRI可精准捕捉肿瘤内部异

质性，强化纹理特征与分子分型的关联。

新型特征提取算法研发需聚焦肿瘤异质性的精准量化，生

成对抗网络（GAN）、变分自编码器（VAE）等深度学习算法

可通过数据增强[16]、潜在特征学习，挖掘更具特异性的影像生

物标志物。GAN可生成高仿真影像，丰富训练数据；VAE可

学习影像潜在特征表示，助力新标志物发现。

深度学习模型创新需提升特征学习与泛化能力。

Transformer 架构的自注意力机制可有效捕捉影像全局与局部

信息关联，提升复杂特征解析能力；迁移学习可利用大规模数

据集预训练模型，减少对标注数据的依赖；强化学习可优化模

型决策过程，提升泛化能力。这些技术的融合应用，将推动放

射组学模型性能的跨越式提升。

放射组学与基因组学、蛋白质组学的融合，是解析乳腺癌

生物学机制的核心方向[17]。基因组学揭示基因表达与突变特

征，蛋白质组学反映蛋白质表达与功能，放射组学提供肿瘤宏

观影像特征，三者融合可实现“影像-分子-蛋白”多层面的全

方位分析，明确影像特征与分子机制的内在关联。

研究证实，部分 MRI 影像组学特征与乳腺癌特定基因表

达模式相关[18]，这些基因参与肿瘤增殖、侵袭过程。多组学融

合可构建乳腺癌生物学网络，解析肿瘤异质性的分子基础，为

精准治疗提供新靶点。例如，通过融合分析发现与影像特征关

联的驱动基因，可为靶向药物研发提供依据，推动乳腺癌治疗

向分子机制导向的精准化方向发展。

7 总结与展望

放射组学作为新兴影像分析技术，在乳腺癌分子分型术前

无创预测中取得显著进展。通过从乳腺钼靶、MRI、超声等多

模态影像中高通量提取定量特征，结合机器学习与深度学习算

法构建预测模型，为突破传统有创检测的局限提供了有效路

径，推动乳腺癌精准诊疗发展。研究证实，单一模态放射组学

均展现出预测潜力：乳腺钼靶放射组学通过钙化、肿块特征分

析实现分型鉴别；MRI 放射组学凭借高敏感性与功能信息优

势，预测性能突出；超声放射组学以无辐射、便捷性为特色，

适合广泛筛查。多模态融合进一步整合各技术优势，显著提升

预测准确性，AUC 可达 0.90以上。这些成果具有重要临床价

值：可为治疗方案制定提供精准指导，实现个性化治疗；助力

预后评估，优化随访监测计划；其无创性、可重复性优势提升

了患者接受度与医疗效率。同时，放射组学仍面临严峻挑战：

数据质量与标准化不足导致结果可比性差；模型可重复性与泛

化能力有限，制约临床推广；生物学可解释性缺失阻碍机制研

究与临床信任。这些问题需在后续研究中重点突破。

未来，放射组学的发展需聚焦三大方向：技术层面，通过

高分辨率成像、新型算法及深度学习模型创新，提升特征提取

精度与模型性能；研究层面，推进多组学融合，解析影像特征

与分子机制的内在关联，为精准治疗提供新靶点；转化层面，

通过多中心研究、临床工具开发及医生培训，推动技术从研究

向临床实践转化。持续的技术创新与深入研究，将推动放射组

学在乳腺癌早期诊断、精准治疗、预后评估中发挥更大作用，

有望成为乳腺癌精准医疗体系的核心组成部分，为患者带来更

多福祉。
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