基于放射组学在乳腺癌分子分型预测中的研究进展

ISSN:2982-3838

EISSN:

语言:中文

作者
张金波,张曼丽
文章摘要
乳腺癌分子分型是精准治疗与预后评估的核心依据,传统有创检测存在样本局限性与创伤风险,放射组学的发展为预测分子分型提供了新的路径选择。本文系统综述放射组学在乳腺癌分子分型预测中的研究进展,阐述乳腺癌分子分型标准与放射组学核心原理,随后介绍乳腺钼靶摄影、磁共振成像(MRI)、超声等主流成像技术在放射组学中的应用基础,以及特征提取、选择降维、模型构建与评估的技术流程。重点总结单一模态与多模态融合放射组学的研究成果,证实多模态融合可显著提升预测准确性。进而分析放射组学在治疗方案指导、预后评估中的临床价值,及其无创性、可重复性等优势以及与技术标准化不足、模型泛化能力有限、生物学可解释性缺失等局限性。最后展望未来发展方向,提出需通过成像技术优化、新型算法研发实现技术创新,通过多组学融合解析分子机制,通过多中心研究与临床工具开发推动技术转化。放射组学有望成为乳腺癌医疗体系的组成部分,为实现个体化诊疗提供关键支撑。
文章关键词
放射组学;乳腺癌;分子分型;多模态成像
参考文献
[1] Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. The British journal of radiology 2022;95(1130):20211033. [2] Yang X, Li J, Sun H, et al. Radiomics Integration of Mammography and DCE-MRI for Predicting Molecular Subtypes in Breast Cancer Patients. Breast Cancer: Targets and Therapy 2025:187-200. [3] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278(2):563-77. [4] Ma W, Zhao Y, Ji Y, et al. Breast cancer molecular subtype prediction by mammographic radiomic features. Academic radiology 2019;26(2):196-201. [5] Mo S, Luo H, Wang M, et al. Machine learning radiomics based on intra and peri tumor PA/US images distinguish between luminal and non-luminal tumors in breast cancers. Photoacoustics 2024;40:100653. [6] Xu H, Yang A, Kang M, et al. Intratumoral and peritumoral radiomics signature based on DCE-MRI can distinguish between luminal and non-luminal breast cancer molecular subtypes. Scientific Reports 2025;15(1):1-11. [7] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. European journal of cancer 2012;48(4):441-46. [8] Dahr JM, Gaafar AS. Performance Evaluation of the Filter, Wrapper, Mutual Information Theory, and Machine Learning Feature Selection Methods for XGBoost-Based Classification Tasks. Informatica 2025;49(24) [9] Zhang C, Liu Y, Tie N. Forest land resource information acquisition with sentinel-2 image utilizing support vector machine, k-nearest neighbor, random forest, decision trees and multi-layer perceptron. Forests 2023;14(2):254. [10] Cabot JH, Ross EG. Evaluating prediction model performance. Surgery 2023;174(3):723-26. [11] Lee S-H, Park H, Ko ES. Radiomics in breast imaging from techniques to clinical applications: a review. Korean journal of radiology 2020;21(7):779. [12] Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ breast cancer 2016;2:16012. [13] Gong X, Li Q, Gu L, et al. Conventional ultrasound and contrast-enhanced ultrasound radiomics in breast cancer and molecular subtype diagnosis. Frontiers in Oncology 2023;13:1158736. [14] Huang Y, Yao Z, Li L, et al. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. EBioMedicine 2023;94 [15] Xu Z, Ye J, Zhong H, et al. Machine learning model for predicting epidermal growth factor receptor expression status in breast cancer using ultrasound radiomics. Frontiers in Oncology 2025;15:1683164. [16] Dimitriadis A, Trivizakis E, Papanikolaou N, et al. Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review. Insights into Imaging 2022;13(1):188. [17] Qi Y-J, Su G-H, You C, et al. Radiomics in breast cancer: current advances and future directions. Cell Reports Medicine 2024;5(9) [18] Bismeijer T, Van Der Velden BH, Canisius S, et al. Radiogenomic analysis of breast cancer by linking MRI phenotypes with tumor gene expression. Radiology 2020;296(2):277-87.
Full Text:
DOI